![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsncv0 | Structured version Visualization version GIF version |
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.) |
Ref | Expression |
---|---|
lspsncv0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsncv0.z | ⊢ 0 = (0g‘𝑊) |
lspsncv0.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsncv0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsncv0.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspsncv0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsncv0 | ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3785 | . . . . 5 ⊢ ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦)) | |
2 | simpr 478 | . . . . . 6 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦) | |
3 | nesym 3027 | . . . . . 6 ⊢ ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 }) | |
4 | 2, 3 | sylib 210 | . . . . 5 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 }) |
5 | 1, 4 | sylbi 209 | . . . 4 ⊢ ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 }) |
6 | lspsncv0.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | ad2antrr 718 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec) |
8 | simplr 786 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ∈ 𝑆) | |
9 | lspsncv0.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | 9 | ad2antrr 718 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋 ∈ 𝑉) |
11 | simpr 478 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋})) | |
12 | lspsncv0.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lspsncv0.z | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝑊) | |
14 | lspsncv0.s | . . . . . . . . . . 11 ⊢ 𝑆 = (LSubSp‘𝑊) | |
15 | lspsncv0.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LSpan‘𝑊) | |
16 | 12, 13, 14, 15 | lspsnat 19467 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LVec ∧ 𝑦 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
17 | 7, 8, 10, 11, 16 | syl31anc 1493 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
18 | 17 | orcomd 898 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋}))) |
19 | 18 | ord 891 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))) |
20 | 19 | ex 402 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))) |
21 | 20 | com23 86 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))) |
22 | npss 3914 | . . . . 5 ⊢ (¬ 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))) | |
23 | 21, 22 | syl6ibr 244 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
24 | 5, 23 | syl5 34 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
25 | 24 | ralrimiva 3147 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
26 | ralinexa 3177 | . 2 ⊢ (∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) | |
27 | 25, 26 | sylib 210 | 1 ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 ∃wrex 3090 ⊆ wss 3769 ⊊ wpss 3770 {csn 4368 ‘cfv 6101 Basecbs 16184 0gc0g 16415 LSubSpclss 19250 LSpanclspn 19292 LVecclvec 19423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-minusg 17742 df-sbg 17743 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-drng 19067 df-lmod 19183 df-lss 19251 df-lsp 19293 df-lvec 19424 |
This theorem is referenced by: lsatcv0 35052 |
Copyright terms: Public domain | W3C validator |