MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsncv0 Structured version   Visualization version   GIF version

Theorem lspsncv0 21071
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.)
Hypotheses
Ref Expression
lspsncv0.v 𝑉 = (Base‘𝑊)
lspsncv0.z 0 = (0g𝑊)
lspsncv0.s 𝑆 = (LSubSp‘𝑊)
lspsncv0.n 𝑁 = (LSpan‘𝑊)
lspsncv0.w (𝜑𝑊 ∈ LVec)
lspsncv0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspsncv0 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝑁(𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑦)   0 (𝑦)

Proof of Theorem lspsncv0
StepHypRef Expression
1 df-pss 3925 . . . . 5 ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦))
2 simpr 484 . . . . . 6 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦)
3 nesym 2981 . . . . . 6 ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 })
42, 3sylib 218 . . . . 5 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 })
51, 4sylbi 217 . . . 4 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 })
6 lspsncv0.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
76ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
8 simplr 768 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦𝑆)
9 lspsncv0.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋𝑉)
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋}))
12 lspsncv0.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lspsncv0.z . . . . . . . . . . 11 0 = (0g𝑊)
14 lspsncv0.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
15 lspsncv0.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
1612, 13, 14, 15lspsnat 21070 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑦𝑆𝑋𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
177, 8, 10, 11, 16syl31anc 1375 . . . . . . . . 9 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
1817orcomd 871 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋})))
1918ord 864 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))
2019ex 412 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))))
2120com23 86 . . . . 5 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))))
22 npss 4066 . . . . 5 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))
2321, 22imbitrrdi 252 . . . 4 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
245, 23syl5 34 . . 3 ((𝜑𝑦𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
2524ralrimiva 3121 . 2 (𝜑 → ∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
26 ralinexa 3082 . 2 (∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
2725, 26sylib 218 1 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905  wpss 3906  {csn 4579  cfv 6486  Basecbs 17138  0gc0g 17361  LSubSpclss 20852  LSpanclspn 20892  LVecclvec 21024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025
This theorem is referenced by:  lsatcv0  39009
  Copyright terms: Public domain W3C validator