| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncv0 | Structured version Visualization version GIF version | ||
| Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.) |
| Ref | Expression |
|---|---|
| lspsncv0.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsncv0.z | ⊢ 0 = (0g‘𝑊) |
| lspsncv0.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspsncv0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspsncv0.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspsncv0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lspsncv0 | ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3920 | . . . . 5 ⊢ ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦)) | |
| 2 | simpr 484 | . . . . . 6 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦) | |
| 3 | nesym 2982 | . . . . . 6 ⊢ ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 }) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 }) |
| 5 | 1, 4 | sylbi 217 | . . . 4 ⊢ ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 }) |
| 6 | lspsncv0.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec) |
| 8 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ∈ 𝑆) | |
| 9 | lspsncv0.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | 9 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋 ∈ 𝑉) |
| 11 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋})) | |
| 12 | lspsncv0.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Base‘𝑊) | |
| 13 | lspsncv0.z | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝑊) | |
| 14 | lspsncv0.s | . . . . . . . . . . 11 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 15 | lspsncv0.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 16 | 12, 13, 14, 15 | lspsnat 21075 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LVec ∧ 𝑦 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
| 17 | 7, 8, 10, 11, 16 | syl31anc 1375 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
| 18 | 17 | orcomd 871 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋}))) |
| 19 | 18 | ord 864 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))) |
| 20 | 19 | ex 412 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))) |
| 21 | 20 | com23 86 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))) |
| 22 | npss 4061 | . . . . 5 ⊢ (¬ 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))) | |
| 23 | 21, 22 | imbitrrdi 252 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
| 24 | 5, 23 | syl5 34 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
| 25 | 24 | ralrimiva 3122 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
| 26 | ralinexa 3083 | . 2 ⊢ (∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) | |
| 27 | 25, 26 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3900 ⊊ wpss 3901 {csn 4574 ‘cfv 6477 Basecbs 17112 0gc0g 17335 LSubSpclss 20857 LSpanclspn 20897 LVecclvec 21029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lvec 21030 |
| This theorem is referenced by: lsatcv0 39049 |
| Copyright terms: Public domain | W3C validator |