![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsncv0 | Structured version Visualization version GIF version |
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.) |
Ref | Expression |
---|---|
lspsncv0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsncv0.z | ⊢ 0 = (0g‘𝑊) |
lspsncv0.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsncv0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsncv0.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspsncv0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsncv0 | ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3983 | . . . . 5 ⊢ ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦)) | |
2 | simpr 484 | . . . . . 6 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦) | |
3 | nesym 2995 | . . . . . 6 ⊢ ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 }) | |
4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 }) |
5 | 1, 4 | sylbi 217 | . . . 4 ⊢ ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 }) |
6 | lspsncv0.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec) |
8 | simplr 769 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ∈ 𝑆) | |
9 | lspsncv0.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | 9 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋 ∈ 𝑉) |
11 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋})) | |
12 | lspsncv0.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lspsncv0.z | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝑊) | |
14 | lspsncv0.s | . . . . . . . . . . 11 ⊢ 𝑆 = (LSubSp‘𝑊) | |
15 | lspsncv0.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LSpan‘𝑊) | |
16 | 12, 13, 14, 15 | lspsnat 21165 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LVec ∧ 𝑦 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
17 | 7, 8, 10, 11, 16 | syl31anc 1372 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
18 | 17 | orcomd 871 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋}))) |
19 | 18 | ord 864 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))) |
20 | 19 | ex 412 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))) |
21 | 20 | com23 86 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))) |
22 | npss 4123 | . . . . 5 ⊢ (¬ 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))) | |
23 | 21, 22 | imbitrrdi 252 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
24 | 5, 23 | syl5 34 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
25 | 24 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
26 | ralinexa 3099 | . 2 ⊢ (∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) | |
27 | 25, 26 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ⊊ wpss 3964 {csn 4631 ‘cfv 6563 Basecbs 17245 0gc0g 17486 LSubSpclss 20947 LSpanclspn 20987 LVecclvec 21119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 |
This theorem is referenced by: lsatcv0 39013 |
Copyright terms: Public domain | W3C validator |