MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsncv0 Structured version   Visualization version   GIF version

Theorem lspsncv0 21171
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.)
Hypotheses
Ref Expression
lspsncv0.v 𝑉 = (Base‘𝑊)
lspsncv0.z 0 = (0g𝑊)
lspsncv0.s 𝑆 = (LSubSp‘𝑊)
lspsncv0.n 𝑁 = (LSpan‘𝑊)
lspsncv0.w (𝜑𝑊 ∈ LVec)
lspsncv0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspsncv0 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝑁(𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑦)   0 (𝑦)

Proof of Theorem lspsncv0
StepHypRef Expression
1 df-pss 3996 . . . . 5 ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦))
2 simpr 484 . . . . . 6 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦)
3 nesym 3003 . . . . . 6 ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 })
42, 3sylib 218 . . . . 5 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 })
51, 4sylbi 217 . . . 4 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 })
6 lspsncv0.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
76ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
8 simplr 768 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦𝑆)
9 lspsncv0.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
109ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋𝑉)
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋}))
12 lspsncv0.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lspsncv0.z . . . . . . . . . . 11 0 = (0g𝑊)
14 lspsncv0.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
15 lspsncv0.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
1612, 13, 14, 15lspsnat 21170 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑦𝑆𝑋𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
177, 8, 10, 11, 16syl31anc 1373 . . . . . . . . 9 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
1817orcomd 870 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋})))
1918ord 863 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))
2019ex 412 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))))
2120com23 86 . . . . 5 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))))
22 npss 4136 . . . . 5 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))
2321, 22imbitrrdi 252 . . . 4 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
245, 23syl5 34 . . 3 ((𝜑𝑦𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
2524ralrimiva 3152 . 2 (𝜑 → ∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
26 ralinexa 3107 . 2 (∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
2725, 26sylib 218 1 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  wpss 3977  {csn 4648  cfv 6573  Basecbs 17258  0gc0g 17499  LSubSpclss 20952  LSpanclspn 20992  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125
This theorem is referenced by:  lsatcv0  38987
  Copyright terms: Public domain W3C validator