![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsncv0 | Structured version Visualization version GIF version |
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.) |
Ref | Expression |
---|---|
lspsncv0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsncv0.z | ⊢ 0 = (0g‘𝑊) |
lspsncv0.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsncv0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsncv0.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspsncv0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsncv0 | ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3966 | . . . . 5 ⊢ ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦)) | |
2 | simpr 484 | . . . . . 6 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦) | |
3 | nesym 2994 | . . . . . 6 ⊢ ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 }) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 }) |
5 | 1, 4 | sylbi 216 | . . . 4 ⊢ ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 }) |
6 | lspsncv0.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec) |
8 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ∈ 𝑆) | |
9 | lspsncv0.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | 9 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋 ∈ 𝑉) |
11 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋})) | |
12 | lspsncv0.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lspsncv0.z | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝑊) | |
14 | lspsncv0.s | . . . . . . . . . . 11 ⊢ 𝑆 = (LSubSp‘𝑊) | |
15 | lspsncv0.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LSpan‘𝑊) | |
16 | 12, 13, 14, 15 | lspsnat 21033 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ LVec ∧ 𝑦 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
17 | 7, 8, 10, 11, 16 | syl31anc 1371 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 })) |
18 | 17 | orcomd 870 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋}))) |
19 | 18 | ord 863 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))) |
20 | 19 | ex 412 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))) |
21 | 20 | com23 86 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))) |
22 | npss 4108 | . . . . 5 ⊢ (¬ 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))) | |
23 | 21, 22 | imbitrrdi 251 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
24 | 5, 23 | syl5 34 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
25 | 24 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋}))) |
26 | ralinexa 3098 | . 2 ⊢ (∀𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) | |
27 | 25, 26 | sylib 217 | 1 ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ⊆ wss 3947 ⊊ wpss 3948 {csn 4629 ‘cfv 6548 Basecbs 17180 0gc0g 17421 LSubSpclss 20815 LSpanclspn 20855 LVecclvec 20987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-sbg 18895 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-drng 20626 df-lmod 20745 df-lss 20816 df-lsp 20856 df-lvec 20988 |
This theorem is referenced by: lsatcv0 38503 |
Copyright terms: Public domain | W3C validator |