MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsncv0 Structured version   Visualization version   GIF version

Theorem lspsncv0 19921
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.)
Hypotheses
Ref Expression
lspsncv0.v 𝑉 = (Base‘𝑊)
lspsncv0.z 0 = (0g𝑊)
lspsncv0.s 𝑆 = (LSubSp‘𝑊)
lspsncv0.n 𝑁 = (LSpan‘𝑊)
lspsncv0.w (𝜑𝑊 ∈ LVec)
lspsncv0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspsncv0 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝑁(𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑦)   0 (𝑦)

Proof of Theorem lspsncv0
StepHypRef Expression
1 df-pss 3957 . . . . 5 ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦))
2 simpr 487 . . . . . 6 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦)
3 nesym 3075 . . . . . 6 ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 })
42, 3sylib 220 . . . . 5 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 })
51, 4sylbi 219 . . . 4 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 })
6 lspsncv0.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
76ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
8 simplr 767 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦𝑆)
9 lspsncv0.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
109ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋𝑉)
11 simpr 487 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋}))
12 lspsncv0.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lspsncv0.z . . . . . . . . . . 11 0 = (0g𝑊)
14 lspsncv0.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
15 lspsncv0.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
1612, 13, 14, 15lspsnat 19920 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑦𝑆𝑋𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
177, 8, 10, 11, 16syl31anc 1369 . . . . . . . . 9 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
1817orcomd 867 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋})))
1918ord 860 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))
2019ex 415 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))))
2120com23 86 . . . . 5 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))))
22 npss 4090 . . . . 5 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))
2321, 22syl6ibr 254 . . . 4 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
245, 23syl5 34 . . 3 ((𝜑𝑦𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
2524ralrimiva 3185 . 2 (𝜑 → ∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
26 ralinexa 3267 . 2 (∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
2725, 26sylib 220 1 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  wss 3939  wpss 3940  {csn 4570  cfv 6358  Basecbs 16486  0gc0g 16716  LSubSpclss 19706  LSpanclspn 19746  LVecclvec 19877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878
This theorem is referenced by:  lsatcv0  36171
  Copyright terms: Public domain W3C validator