MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsncv0 Structured version   Visualization version   GIF version

Theorem lspsncv0 21093
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.)
Hypotheses
Ref Expression
lspsncv0.v 𝑉 = (Base‘𝑊)
lspsncv0.z 0 = (0g𝑊)
lspsncv0.s 𝑆 = (LSubSp‘𝑊)
lspsncv0.n 𝑁 = (LSpan‘𝑊)
lspsncv0.w (𝜑𝑊 ∈ LVec)
lspsncv0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspsncv0 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝑁(𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑦)   0 (𝑦)

Proof of Theorem lspsncv0
StepHypRef Expression
1 df-pss 3919 . . . . 5 ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦))
2 simpr 484 . . . . . 6 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦)
3 nesym 2986 . . . . . 6 ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 })
42, 3sylib 218 . . . . 5 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 })
51, 4sylbi 217 . . . 4 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 })
6 lspsncv0.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
76ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
8 simplr 768 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦𝑆)
9 lspsncv0.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
109ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋𝑉)
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋}))
12 lspsncv0.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lspsncv0.z . . . . . . . . . . 11 0 = (0g𝑊)
14 lspsncv0.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
15 lspsncv0.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
1612, 13, 14, 15lspsnat 21092 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑦𝑆𝑋𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
177, 8, 10, 11, 16syl31anc 1375 . . . . . . . . 9 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
1817orcomd 871 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋})))
1918ord 864 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))
2019ex 412 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))))
2120com23 86 . . . . 5 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))))
22 npss 4064 . . . . 5 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))
2321, 22imbitrrdi 252 . . . 4 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
245, 23syl5 34 . . 3 ((𝜑𝑦𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
2524ralrimiva 3126 . 2 (𝜑 → ∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
26 ralinexa 3087 . 2 (∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
2725, 26sylib 218 1 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  wss 3899  wpss 3900  {csn 4577  cfv 6489  Basecbs 17130  0gc0g 17353  LSubSpclss 20874  LSpanclspn 20914  LVecclvec 21046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-sbg 18861  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-lvec 21047
This theorem is referenced by:  lsatcv0  39140
  Copyright terms: Public domain W3C validator