MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem13 Structured version   Visualization version   GIF version

Theorem kmlem13 10232
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem13 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡   𝑦,𝐴,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem13
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kmlem1 10220 . . 3 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → ∀𝑥(∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
2 raleq 3331 . . . . . . 7 (𝑥 = → (∀𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅)))
32raleqbi1dv 3346 . . . . . 6 (𝑥 = → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅)))
4 raleq 3331 . . . . . . 7 (𝑥 = → (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑧 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
54exbidv 1920 . . . . . 6 (𝑥 = → (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑧 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
63, 5imbi12d 344 . . . . 5 (𝑥 = → ((∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ (∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)))))
76cbvalvw 2035 . . . 4 (∀𝑥(∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
8 kmlem9.1 . . . . . . 7 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
98kmlem10 10229 . . . . . 6 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → ∃𝑦𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
10 ineq2 4235 . . . . . . . . . . . 12 (𝑦 = 𝑔 → (𝑧𝑦) = (𝑧𝑔))
1110eleq2d 2830 . . . . . . . . . . 11 (𝑦 = 𝑔 → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (𝑧𝑔)))
1211eubidv 2589 . . . . . . . . . 10 (𝑦 = 𝑔 → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧𝑔)))
1312imbi2d 340 . . . . . . . . 9 (𝑦 = 𝑔 → ((𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔))))
1413ralbidv 3184 . . . . . . . 8 (𝑦 = 𝑔 → (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔))))
1514cbvexvw 2036 . . . . . . 7 (∃𝑦𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∃𝑔𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔)))
16 kmlem3 10222 . . . . . . . . . . 11 ((𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∃𝑣𝑧𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)))
17 ralinexa 3107 . . . . . . . . . . . 12 (∀𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)) ↔ ¬ ∃𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
1817rexbii 3100 . . . . . . . . . . 11 (∃𝑣𝑧𝑤𝑥 (𝑧𝑤 → ¬ 𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑣𝑧 ¬ ∃𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
19 rexnal 3106 . . . . . . . . . . 11 (∃𝑣𝑧 ¬ ∃𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ¬ ∀𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
2016, 18, 193bitri 297 . . . . . . . . . 10 ((𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ¬ ∀𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
2120ralbii 3099 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∀𝑧𝑥 ¬ ∀𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
22 ralnex 3078 . . . . . . . . 9 (∀𝑧𝑥 ¬ ∀𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
2321, 22bitri 275 . . . . . . . 8 (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
248kmlem12 10231 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔)) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 𝐴)))))
25 vex 3492 . . . . . . . . . . . . 13 𝑔 ∈ V
2625inex1 5335 . . . . . . . . . . . 12 (𝑔 𝐴) ∈ V
27 ineq2 4235 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑔 𝐴) → (𝑧𝑦) = (𝑧 ∩ (𝑔 𝐴)))
2827eleq2d 2830 . . . . . . . . . . . . . . 15 (𝑦 = (𝑔 𝐴) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑔 𝐴))))
2928eubidv 2589 . . . . . . . . . . . . . 14 (𝑦 = (𝑔 𝐴) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 𝐴))))
3029imbi2d 340 . . . . . . . . . . . . 13 (𝑦 = (𝑔 𝐴) → ((𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 𝐴)))))
3130ralbidv 3184 . . . . . . . . . . . 12 (𝑦 = (𝑔 𝐴) → (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 𝐴)))))
3226, 31spcev 3619 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 𝐴))) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
3324, 32syl6 35 . . . . . . . . . 10 (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
3433exlimdv 1932 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → (∃𝑔𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
3534com12 32 . . . . . . . 8 (∃𝑔𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔)) → (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
3623, 35biimtrrid 243 . . . . . . 7 (∃𝑔𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑔)) → (¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
3715, 36sylbi 217 . . . . . 6 (∃𝑦𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → (¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
389, 37syl 17 . . . . 5 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → (¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
3938alrimiv 1926 . . . 4 (∀(∀𝑧𝑤 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → ∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
407, 39sylbi 217 . . 3 (∀𝑥(∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → ∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
411, 40syl 17 . 2 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → ∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
42 kmlem7 10226 . . . . 5 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)))
4342imim1i 63 . . . 4 ((¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
44 biimt 360 . . . . . . . . 9 (𝑧 ≠ ∅ → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
4544ralimi 3089 . . . . . . . 8 (∀𝑧𝑥 𝑧 ≠ ∅ → ∀𝑧𝑥 (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
46 ralbi 3109 . . . . . . . 8 (∀𝑧𝑥 (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
4745, 46syl 17 . . . . . . 7 (∀𝑧𝑥 𝑧 ≠ ∅ → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
4847exbidv 1920 . . . . . 6 (∀𝑧𝑥 𝑧 ≠ ∅ → (∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
4948adantr 480 . . . . 5 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → (∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
5049pm5.74i 271 . . . 4 (((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
5143, 50sylibr 234 . . 3 ((¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
5251alimi 1809 . 2 (∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) → ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
5341, 52impbii 209 1 (∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥(¬ ∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  {cab 2717  wne 2946  wral 3067  wrex 3076  cdif 3973  cin 3975  c0 4352  {csn 4648   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-uni 4932  df-iun 5017
This theorem is referenced by:  dfackm  10236
  Copyright terms: Public domain W3C validator