| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | kmlem1 10191 | . . 3
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀𝑥(∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 2 |  | raleq 3323 | . . . . . . 7
⊢ (𝑥 = ℎ → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) | 
| 3 | 2 | raleqbi1dv 3338 | . . . . . 6
⊢ (𝑥 = ℎ → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ ∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) | 
| 4 |  | raleq 3323 | . . . . . . 7
⊢ (𝑥 = ℎ → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧 ∈ ℎ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 5 | 4 | exbidv 1921 | . . . . . 6
⊢ (𝑥 = ℎ → (∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦∀𝑧 ∈ ℎ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 6 | 3, 5 | imbi12d 344 | . . . . 5
⊢ (𝑥 = ℎ → ((∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ (∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))))) | 
| 7 | 6 | cbvalvw 2035 | . . . 4
⊢
(∀𝑥(∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ↔ ∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 8 |  | kmlem9.1 | . . . . . . 7
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} | 
| 9 | 8 | kmlem10 10200 | . . . . . 6
⊢
(∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → ∃𝑦∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | 
| 10 |  | ineq2 4214 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑔 → (𝑧 ∩ 𝑦) = (𝑧 ∩ 𝑔)) | 
| 11 | 10 | eleq2d 2827 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑔 → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ 𝑔))) | 
| 12 | 11 | eubidv 2586 | . . . . . . . . . 10
⊢ (𝑦 = 𝑔 → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔))) | 
| 13 | 12 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑦 = 𝑔 → ((𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔)))) | 
| 14 | 13 | ralbidv 3178 | . . . . . . . 8
⊢ (𝑦 = 𝑔 → (∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔)))) | 
| 15 | 14 | cbvexvw 2036 | . . . . . . 7
⊢
(∃𝑦∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑔∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔))) | 
| 16 |  | kmlem3 10193 | . . . . . . . . . . 11
⊢ ((𝑧 ∖ ∪ (𝑥
∖ {𝑧})) ≠ ∅
↔ ∃𝑣 ∈
𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 17 |  | ralinexa 3101 | . . . . . . . . . . . 12
⊢
(∀𝑤 ∈
𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 18 | 17 | rexbii 3094 | . . . . . . . . . . 11
⊢
(∃𝑣 ∈
𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∃𝑣 ∈ 𝑧 ¬ ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 19 |  | rexnal 3100 | . . . . . . . . . . 11
⊢
(∃𝑣 ∈
𝑧 ¬ ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 20 | 16, 18, 19 | 3bitri 297 | . . . . . . . . . 10
⊢ ((𝑧 ∖ ∪ (𝑥
∖ {𝑧})) ≠ ∅
↔ ¬ ∀𝑣
∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 21 | 20 | ralbii 3093 | . . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∀𝑧 ∈ 𝑥 ¬ ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 22 |  | ralnex 3072 | . . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 ¬ ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 23 | 21, 22 | bitri 275 | . . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 24 | 8 | kmlem12 10202 | . . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔)) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 ∩ ∪ 𝐴))))) | 
| 25 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑔 ∈ V | 
| 26 | 25 | inex1 5317 | . . . . . . . . . . . 12
⊢ (𝑔 ∩ ∪ 𝐴)
∈ V | 
| 27 |  | ineq2 4214 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑔 ∩ ∪ 𝐴) → (𝑧 ∩ 𝑦) = (𝑧 ∩ (𝑔 ∩ ∪ 𝐴))) | 
| 28 | 27 | eleq2d 2827 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑔 ∩ ∪ 𝐴) → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑔 ∩ ∪ 𝐴)))) | 
| 29 | 28 | eubidv 2586 | . . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑔 ∩ ∪ 𝐴) → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 ∩ ∪ 𝐴)))) | 
| 30 | 29 | imbi2d 340 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝑔 ∩ ∪ 𝐴) → ((𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 ∩ ∪ 𝐴))))) | 
| 31 | 30 | ralbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑦 = (𝑔 ∩ ∪ 𝐴) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 ∩ ∪ 𝐴))))) | 
| 32 | 26, 31 | spcev 3606 | . . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑔 ∩ ∪ 𝐴))) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | 
| 33 | 24, 32 | syl6 35 | . . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 34 | 33 | exlimdv 1933 | . . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → (∃𝑔∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 35 | 34 | com12 32 | . . . . . . . 8
⊢
(∃𝑔∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔)) → (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 36 | 23, 35 | biimtrrid 243 | . . . . . . 7
⊢
(∃𝑔∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑔)) → (¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 37 | 15, 36 | sylbi 217 | . . . . . 6
⊢
(∃𝑦∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → (¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 38 | 9, 37 | syl 17 | . . . . 5
⊢
(∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → (¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 39 | 38 | alrimiv 1927 | . . . 4
⊢
(∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → ∀𝑥(¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 40 | 7, 39 | sylbi 217 | . . 3
⊢
(∀𝑥(∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → ∀𝑥(¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 41 | 1, 40 | syl 17 | . 2
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀𝑥(¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 42 |  | kmlem7 10197 | . . . . 5
⊢
((∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | 
| 43 | 42 | imim1i 63 | . . . 4
⊢ ((¬
∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 44 |  | biimt 360 | . . . . . . . . 9
⊢ (𝑧 ≠ ∅ →
(∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 45 | 44 | ralimi 3083 | . . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 𝑧 ≠ ∅ → ∀𝑧 ∈ 𝑥 (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 46 |  | ralbi 3103 | . . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → (∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 47 | 45, 46 | syl 17 | . . . . . . 7
⊢
(∀𝑧 ∈
𝑥 𝑧 ≠ ∅ → (∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 48 | 47 | exbidv 1921 | . . . . . 6
⊢
(∀𝑧 ∈
𝑥 𝑧 ≠ ∅ → (∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 49 | 48 | adantr 480 | . . . . 5
⊢
((∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 50 | 49 | pm5.74i 271 | . . . 4
⊢
(((∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | 
| 51 | 43, 50 | sylibr 234 | . . 3
⊢ ((¬
∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | 
| 52 | 51 | alimi 1811 | . 2
⊢
(∀𝑥(¬
∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) → ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | 
| 53 | 41, 52 | impbii 209 | 1
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥(¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) |