Step | Hyp | Ref
| Expression |
1 | | lhop1.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
2 | | lhop1.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
3 | | lhop1lem.db |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ≤ 𝐵) |
4 | | iooss2 13115 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐷 ≤ 𝐵) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵)) |
5 | 2, 3, 4 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵)) |
6 | | lhop1lem.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (𝐴(,)𝐷)) |
7 | 5, 6 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝐴(,)𝐵)) |
8 | 1, 7 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
9 | 8 | recnd 11003 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
10 | | lhop1.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
11 | 10, 7 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) |
12 | 11 | recnd 11003 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑋) ∈ ℂ) |
13 | | lhop1.gn0 |
. . . . . 6
⊢ (𝜑 → ¬ 0 ∈ ran 𝐺) |
14 | 10 | ffnd 6601 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn (𝐴(,)𝐵)) |
15 | | fnfvelrn 6958 |
. . . . . . . . 9
⊢ ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑋) ∈ ran 𝐺) |
16 | 14, 7, 15 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ∈ ran 𝐺) |
17 | | eleq1 2826 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) = 0 → ((𝐺‘𝑋) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺)) |
18 | 16, 17 | syl5ibcom 244 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘𝑋) = 0 → 0 ∈ ran 𝐺)) |
19 | 18 | necon3bd 2957 |
. . . . . 6
⊢ (𝜑 → (¬ 0 ∈ ran 𝐺 → (𝐺‘𝑋) ≠ 0)) |
20 | 13, 19 | mpd 15 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑋) ≠ 0) |
21 | 9, 12, 20 | divcld 11751 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ ℂ) |
22 | | limccl 25039 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐴) ⊆ ℂ |
23 | | lhop1.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐴)) |
24 | 22, 23 | sselid 3919 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℂ) |
25 | 21, 24 | subcld 11332 |
. . 3
⊢ (𝜑 → (((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶) ∈ ℂ) |
26 | 25 | abscld 15148 |
. 2
⊢ (𝜑 → (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) ∈ ℝ) |
27 | | lhop1lem.e |
. . 3
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
28 | 27 | rpred 12772 |
. 2
⊢ (𝜑 → 𝐸 ∈ ℝ) |
29 | | 2re 12047 |
. . . 4
⊢ 2 ∈
ℝ |
30 | 29 | a1i 11 |
. . 3
⊢ (𝜑 → 2 ∈
ℝ) |
31 | 30, 28 | remulcld 11005 |
. 2
⊢ (𝜑 → (2 · 𝐸) ∈
ℝ) |
32 | | cnxmet 23936 |
. . . . . . . . . . . . 13
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
33 | 32 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → (abs ∘ − )
∈ (∞Met‘ℂ)) |
34 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → 𝑣 ∈
(TopOpen‘ℂfld)) |
35 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → 𝐴 ∈ 𝑣) |
36 | | eliooord 13138 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ (𝐴(,)𝐷) → (𝐴 < 𝑋 ∧ 𝑋 < 𝐷)) |
37 | 6, 36 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 < 𝑋 ∧ 𝑋 < 𝐷)) |
38 | 37 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 < 𝑋) |
39 | | lhop1.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ ℝ) |
40 | | ioossre 13140 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴(,)𝐷) ⊆ ℝ |
41 | 40, 6 | sselid 3919 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ ℝ) |
42 | | difrp 12768 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ (𝑋 − 𝐴) ∈
ℝ+)) |
43 | 39, 41, 42 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 < 𝑋 ↔ (𝑋 − 𝐴) ∈
ℝ+)) |
44 | 38, 43 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 − 𝐴) ∈
ℝ+) |
45 | 44 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → (𝑋 − 𝐴) ∈
ℝ+) |
46 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
47 | 46 | cnfldtopn 23945 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
48 | 47 | mopni3 23650 |
. . . . . . . . . . . 12
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣) ∧ (𝑋 − 𝐴) ∈ ℝ+) →
∃𝑟 ∈
ℝ+ (𝑟 <
(𝑋 − 𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣)) |
49 | 33, 34, 35, 45, 48 | syl31anc 1372 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → ∃𝑟 ∈ ℝ+
(𝑟 < (𝑋 − 𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣)) |
50 | | ssrin 4167 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴(ball‘(abs ∘ −
))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ (𝐴(,)𝑋))) |
51 | | lbioo 13110 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
𝐴 ∈ (𝐴(,)𝑋) |
52 | | disjsn 4647 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝑋)) |
53 | 51, 52 | mpbir 230 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴(,)𝑋) ∩ {𝐴}) = ∅ |
54 | | disj3 4387 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴})) |
55 | 53, 54 | mpbi 229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴}) |
56 | 55 | ineq2i 4143 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∩ (𝐴(,)𝑋)) = (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) |
57 | 50, 56 | sseqtrdi 3971 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴(ball‘(abs ∘ −
))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) |
58 | | lhop1lem.r |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑅 = (𝐴 + (𝑟 / 2)) |
59 | 39 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐴 ∈ ℝ) |
60 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑟 ∈ ℝ+) |
61 | 60 | rpred 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑟 ∈ ℝ) |
62 | 61 | rehalfcld 12220 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑟 / 2) ∈ ℝ) |
63 | 59, 62 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐴 + (𝑟 / 2)) ∈ ℝ) |
64 | 58, 63 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ∈ ℝ) |
65 | 64 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ∈ ℂ) |
66 | 39 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 ∈ ℂ) |
67 | 66 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐴 ∈ ℂ) |
68 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (abs
∘ − ) = (abs ∘ − ) |
69 | 68 | cnmetdval 23934 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅 − 𝐴))) |
70 | 65, 67, 69 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅 − 𝐴))) |
71 | 58 | oveq1i 7285 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑅 − 𝐴) = ((𝐴 + (𝑟 / 2)) − 𝐴) |
72 | 61 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑟 ∈ ℂ) |
73 | 72 | halfcld 12218 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑟 / 2) ∈ ℂ) |
74 | 67, 73 | pncan2d 11334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((𝐴 + (𝑟 / 2)) − 𝐴) = (𝑟 / 2)) |
75 | 71, 74 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅 − 𝐴) = (𝑟 / 2)) |
76 | 75 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (abs‘(𝑅 − 𝐴)) = (abs‘(𝑟 / 2))) |
77 | 60 | rphalfcld 12784 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑟 / 2) ∈
ℝ+) |
78 | 77 | rpred 12772 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑟 / 2) ∈ ℝ) |
79 | 77 | rpge0d 12776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 0 ≤ (𝑟 / 2)) |
80 | 78, 79 | absidd 15134 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (abs‘(𝑟 / 2)) = (𝑟 / 2)) |
81 | 70, 76, 80 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(abs ∘ − )𝐴) = (𝑟 / 2)) |
82 | | rphalflt 12759 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) < 𝑟) |
83 | 60, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑟 / 2) < 𝑟) |
84 | 81, 83 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(abs ∘ − )𝐴) < 𝑟) |
85 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (abs ∘ − ) ∈
(∞Met‘ℂ)) |
86 | 61 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑟 ∈ ℝ*) |
87 | | elbl3 23545 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟)) |
88 | 85, 86, 67, 65, 87 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟)) |
89 | 84, 88 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟)) |
90 | 59, 77 | ltaddrpd 12805 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐴 < (𝐴 + (𝑟 / 2))) |
91 | 90, 58 | breqtrrdi 5116 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐴 < 𝑅) |
92 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑋 ∈ ℝ) |
93 | 92, 59 | resubcld 11403 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑋 − 𝐴) ∈ ℝ) |
94 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑟 < (𝑋 − 𝐴)) |
95 | 78, 61, 93, 83, 94 | lttrd 11136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑟 / 2) < (𝑋 − 𝐴)) |
96 | 59, 78, 92 | ltaddsub2d 11576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((𝐴 + (𝑟 / 2)) < 𝑋 ↔ (𝑟 / 2) < (𝑋 − 𝐴))) |
97 | 95, 96 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐴 + (𝑟 / 2)) < 𝑋) |
98 | 58, 97 | eqbrtrid 5109 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 < 𝑋) |
99 | 59 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐴 ∈
ℝ*) |
100 | 41 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
101 | 100 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑋 ∈
ℝ*) |
102 | | elioo2 13120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℝ*
∧ 𝑋 ∈
ℝ*) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅 ∧ 𝑅 < 𝑋))) |
103 | 99, 101, 102 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅 ∧ 𝑅 < 𝑋))) |
104 | 64, 91, 98, 103 | mpbir3and 1341 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ∈ (𝐴(,)𝑋)) |
105 | 89, 104 | elind 4128 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))) |
106 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐹‘𝑋) ∈ ℂ) |
107 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
108 | | lhop1lem.d |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝐷 ∈ ℝ) |
109 | 108 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
110 | 37 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑋 < 𝐷) |
111 | 41, 108, 110 | ltled 11123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑋 ≤ 𝐷) |
112 | 100, 109,
2, 111, 3 | xrletrd 12896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑋 ≤ 𝐵) |
113 | | iooss2 13115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐵 ∈ ℝ*
∧ 𝑋 ≤ 𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵)) |
114 | 2, 112, 113 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵)) |
115 | 114 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵)) |
116 | 115, 104 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ∈ (𝐴(,)𝐵)) |
117 | 107, 116 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐹‘𝑅) ∈ ℝ) |
118 | 117 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐹‘𝑅) ∈ ℂ) |
119 | 106, 118 | subcld 11332 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((𝐹‘𝑋) − (𝐹‘𝑅)) ∈ ℂ) |
120 | 12 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐺‘𝑋) ∈ ℂ) |
121 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
122 | 121, 116 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐺‘𝑅) ∈ ℝ) |
123 | 122 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐺‘𝑅) ∈ ℂ) |
124 | 120, 123 | subcld 11332 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((𝐺‘𝑋) − (𝐺‘𝑅)) ∈ ℂ) |
125 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑅 → (𝐺‘𝑧) = (𝐺‘𝑅)) |
126 | 125 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = 𝑅 → ((𝐺‘𝑋) − (𝐺‘𝑧)) = ((𝐺‘𝑋) − (𝐺‘𝑅))) |
127 | 126 | neeq1d 3003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑅 → (((𝐺‘𝑋) − (𝐺‘𝑧)) ≠ 0 ↔ ((𝐺‘𝑋) − (𝐺‘𝑅)) ≠ 0)) |
128 | | lhop1.gd0 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ¬ 0 ∈ ran
(ℝ D 𝐺)) |
129 | 128 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ¬ 0 ∈ ran (ℝ D
𝐺)) |
130 | 12 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝐺‘𝑋) ∈ ℂ) |
131 | 114 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝐴(,)𝐵)) |
132 | 10 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑧) ∈ ℝ) |
133 | 131, 132 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝐺‘𝑧) ∈ ℝ) |
134 | 133 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝐺‘𝑧) ∈ ℂ) |
135 | 130, 134 | subeq0ad 11342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺‘𝑋) − (𝐺‘𝑧)) = 0 ↔ (𝐺‘𝑋) = (𝐺‘𝑧))) |
136 | | ioossre 13140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐴(,)𝐵) ⊆ ℝ |
137 | 136, 131 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ) |
138 | 137 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → 𝑧 ∈ ℝ) |
139 | 41 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → 𝑋 ∈ ℝ) |
140 | | eliooord 13138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (𝐴(,)𝑋) → (𝐴 < 𝑧 ∧ 𝑧 < 𝑋)) |
141 | 140 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝐴 < 𝑧 ∧ 𝑧 < 𝑋)) |
142 | 141 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 < 𝑋) |
143 | 142 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → 𝑧 < 𝑋) |
144 | 39 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
145 | 144 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 ∈
ℝ*) |
146 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝐵 ∈
ℝ*) |
147 | 141 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 < 𝑧) |
148 | 100, 109,
2, 110, 3 | xrltletrd 12895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 𝑋 < 𝐵) |
149 | 148 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 < 𝐵) |
150 | | iccssioo 13148 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 < 𝑧 ∧ 𝑋 < 𝐵)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵)) |
151 | 145, 146,
147, 149, 150 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵)) |
152 | 151 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵)) |
153 | | ax-resscn 10928 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ℝ
⊆ ℂ |
154 | 153 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → ℝ ⊆
ℂ) |
155 | | fss 6617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
156 | 10, 153, 155 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
157 | 136 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
158 | | lhop1.ig |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
159 | | dvcn 25085 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D
𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
160 | 154, 156,
157, 158, 159 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
161 | | cncffvrn 24061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((ℝ
⊆ ℂ ∧ 𝐺
∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ)) |
162 | 153, 160,
161 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ)) |
163 | 10, 162 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
164 | 163 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
165 | | rescncf 24060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑧[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ))) |
166 | 152, 164,
165 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ)) |
167 | 153 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → ℝ ⊆
ℂ) |
168 | 156 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
169 | 136 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (𝐴(,)𝐵) ⊆ ℝ) |
170 | 152, 136 | sstrdi 3933 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (𝑧[,]𝑋) ⊆ ℝ) |
171 | 46 | tgioo2 23966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
172 | 46, 171 | dvres 25075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑧[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran
(,)))‘(𝑧[,]𝑋)))) |
173 | 167, 168,
169, 170, 172 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran
(,)))‘(𝑧[,]𝑋)))) |
174 | | iccntr 23984 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑧 ∈ ℝ ∧ 𝑋 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋)) |
175 | 138, 139,
174 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → ((int‘(topGen‘ran
(,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋)) |
176 | 175 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran
(,)))‘(𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋))) |
177 | 173, 176 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋))) |
178 | 177 | dmeqd 5814 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋))) |
179 | | ioossicc 13165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧(,)𝑋) ⊆ (𝑧[,]𝑋) |
180 | 179, 152 | sstrid 3932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (𝑧(,)𝑋) ⊆ (𝐴(,)𝐵)) |
181 | 158 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
182 | 180, 181 | sseqtrrd 3962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺)) |
183 | | ssdmres 5914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋)) |
184 | 182, 183 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋)) |
185 | 178, 184 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = (𝑧(,)𝑋)) |
186 | 137 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ*) |
187 | 100 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈
ℝ*) |
188 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ) |
189 | 137, 188,
142 | ltled 11123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ≤ 𝑋) |
190 | | ubicc2 13197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑧 ∈ ℝ*
∧ 𝑋 ∈
ℝ* ∧ 𝑧
≤ 𝑋) → 𝑋 ∈ (𝑧[,]𝑋)) |
191 | 186, 187,
189, 190 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ (𝑧[,]𝑋)) |
192 | 191 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = (𝐺‘𝑋)) |
193 | | lbicc2 13196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑧 ∈ ℝ*
∧ 𝑋 ∈
ℝ* ∧ 𝑧
≤ 𝑋) → 𝑧 ∈ (𝑧[,]𝑋)) |
194 | 186, 187,
189, 193 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝑧[,]𝑋)) |
195 | 194 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = (𝐺‘𝑧)) |
196 | 192, 195 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) ↔ (𝐺‘𝑋) = (𝐺‘𝑧))) |
197 | 196 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧)) |
198 | 197 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋)) |
199 | 138, 139,
143, 166, 185, 198 | rolle 25154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → ∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0) |
200 | 177 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤)) |
201 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑤 ∈ (𝑧(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤)) |
202 | 200, 201 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤)) |
203 | | dvf 25071 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (ℝ
D 𝐺):dom (ℝ D 𝐺)⟶ℂ |
204 | 158 | feq2d 6586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ
D 𝐺):(𝐴(,)𝐵)⟶ℂ)) |
205 | 203, 204 | mpbii 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ) |
206 | 205 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ) |
207 | 206 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
208 | 207 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
209 | 180 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵)) |
210 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((ℝ D 𝐺) Fn
(𝐴(,)𝐵) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺)) |
211 | 208, 209,
210 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺)) |
212 | 202, 211 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺)) |
213 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((ℝ D (𝐺
↾ (𝑧[,]𝑋)))‘𝑤) = 0 → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺))) |
214 | 212, 213 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺))) |
215 | 214 | rexlimdva 3213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → (∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺))) |
216 | 199, 215 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺‘𝑋) = (𝐺‘𝑧)) → 0 ∈ ran (ℝ D 𝐺)) |
217 | 216 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺‘𝑋) = (𝐺‘𝑧) → 0 ∈ ran (ℝ D 𝐺))) |
218 | 135, 217 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺‘𝑋) − (𝐺‘𝑧)) = 0 → 0 ∈ ran (ℝ D 𝐺))) |
219 | 218 | necon3bd 2957 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (¬ 0 ∈ ran (ℝ D
𝐺) → ((𝐺‘𝑋) − (𝐺‘𝑧)) ≠ 0)) |
220 | 129, 219 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺‘𝑋) − (𝐺‘𝑧)) ≠ 0) |
221 | 220 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺‘𝑋) − (𝐺‘𝑧)) ≠ 0) |
222 | 221 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺‘𝑋) − (𝐺‘𝑧)) ≠ 0) |
223 | 127, 222,
104 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((𝐺‘𝑋) − (𝐺‘𝑅)) ≠ 0) |
224 | 119, 124,
223 | divcld 11751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) ∈ ℂ) |
225 | 24 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐶 ∈ ℂ) |
226 | 224, 225 | subcld 11332 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶) ∈ ℂ) |
227 | 226 | abscld 15148 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) ∈ ℝ) |
228 | 28 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐸 ∈ ℝ) |
229 | 109 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐷 ∈
ℝ*) |
230 | 110 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑋 < 𝐷) |
231 | | iccssioo 13148 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℝ*
∧ 𝐷 ∈
ℝ*) ∧ (𝐴 < 𝑅 ∧ 𝑋 < 𝐷)) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷)) |
232 | 99, 229, 91, 230, 231 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷)) |
233 | 5 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵)) |
234 | 232, 233 | sstrd 3931 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐵)) |
235 | | fss 6617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
236 | 1, 153, 235 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
237 | | lhop1.if |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
238 | | dvcn 25085 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D
𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
239 | 154, 236,
157, 237, 238 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
240 | | cncffvrn 24061 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ)) |
241 | 153, 239,
240 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ)) |
242 | 1, 241 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
243 | 242 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
244 | | rescncf 24060 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))) |
245 | 234, 243,
244 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)) |
246 | 163 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
247 | | rescncf 24060 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))) |
248 | 234, 246,
247 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)) |
249 | 153 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ℝ ⊆
ℂ) |
250 | 236 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
251 | 136 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐴(,)𝐵) ⊆ ℝ) |
252 | | iccssre 13161 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑅[,]𝑋) ⊆ ℝ) |
253 | 64, 92, 252 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅[,]𝑋) ⊆ ℝ) |
254 | 46, 171 | dvres 25075 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝑅[,]𝑋)))) |
255 | 249, 250,
251, 253, 254 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝑅[,]𝑋)))) |
256 | | iccntr 23984 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋)) |
257 | 64, 92, 256 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((int‘(topGen‘ran
(,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋)) |
258 | 257 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋))) |
259 | 255, 258 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋))) |
260 | 259 | dmeqd 5814 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋))) |
261 | 59, 64, 91 | ltled 11123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐴 ≤ 𝑅) |
262 | | iooss1 13114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≤ 𝑅) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋)) |
263 | 99, 261, 262 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋)) |
264 | 111 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑋 ≤ 𝐷) |
265 | | iooss2 13115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐷 ∈ ℝ*
∧ 𝑋 ≤ 𝐷) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷)) |
266 | 229, 264,
265 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷)) |
267 | 263, 266 | sstrd 3931 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐷)) |
268 | 267, 233 | sstrd 3931 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐵)) |
269 | 237 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
270 | 268, 269 | sseqtrrd 3962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹)) |
271 | | ssdmres 5914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋)) |
272 | 270, 271 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋)) |
273 | 260, 272 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋)) |
274 | 156 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
275 | 46, 171 | dvres 25075 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran
(,)))‘(𝑅[,]𝑋)))) |
276 | 249, 274,
251, 253, 275 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran
(,)))‘(𝑅[,]𝑋)))) |
277 | 257 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran
(,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋))) |
278 | 276, 277 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋))) |
279 | 278 | dmeqd 5814 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋))) |
280 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
281 | 268, 280 | sseqtrrd 3962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺)) |
282 | | ssdmres 5914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋)) |
283 | 281, 282 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋)) |
284 | 279, 283 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋)) |
285 | 64, 92, 98, 245, 248, 273, 284 | cmvth 25155 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤))) |
286 | 64 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ∈
ℝ*) |
287 | 286 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈
ℝ*) |
288 | 100 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈
ℝ*) |
289 | 64, 92, 98 | ltled 11123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → 𝑅 ≤ 𝑋) |
290 | 289 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ≤ 𝑋) |
291 | | ubicc2 13197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 ∈ ℝ*
∧ 𝑋 ∈
ℝ* ∧ 𝑅
≤ 𝑋) → 𝑋 ∈ (𝑅[,]𝑋)) |
292 | 287, 288,
290, 291 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ (𝑅[,]𝑋)) |
293 | 292 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐹‘𝑋)) |
294 | | lbicc2 13196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 ∈ ℝ*
∧ 𝑋 ∈
ℝ* ∧ 𝑅
≤ 𝑋) → 𝑅 ∈ (𝑅[,]𝑋)) |
295 | 287, 288,
290, 294 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ (𝑅[,]𝑋)) |
296 | 295 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐹‘𝑅)) |
297 | 293, 296 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐹‘𝑋) − (𝐹‘𝑅))) |
298 | 278 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤)) |
299 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤)) |
300 | 298, 299 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤)) |
301 | 297, 300 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐹‘𝑋) − (𝐹‘𝑅)) · ((ℝ D 𝐺)‘𝑤))) |
302 | 292 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐺‘𝑋)) |
303 | 295 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐺‘𝑅)) |
304 | 302, 303 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐺‘𝑋) − (𝐺‘𝑅))) |
305 | 259 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤)) |
306 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐹)‘𝑤)) |
307 | 305, 306 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐹)‘𝑤)) |
308 | 304, 307 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐺‘𝑋) − (𝐺‘𝑅)) · ((ℝ D 𝐹)‘𝑤))) |
309 | 124 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺‘𝑋) − (𝐺‘𝑅)) ∈ ℂ) |
310 | | dvf 25071 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
311 | 237 | feq2d 6586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℂ)) |
312 | 310, 311 | mpbii 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
313 | 312 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
314 | 268 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵)) |
315 | 313, 314 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ) |
316 | 309, 315 | mulcomd 10996 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺‘𝑋) − (𝐺‘𝑅)) · ((ℝ D 𝐹)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺‘𝑋) − (𝐺‘𝑅)))) |
317 | 308, 316 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺‘𝑋) − (𝐺‘𝑅)))) |
318 | 301, 317 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹‘𝑋) − (𝐹‘𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺‘𝑋) − (𝐺‘𝑅))))) |
319 | 119 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹‘𝑋) − (𝐹‘𝑅)) ∈ ℂ) |
320 | 205 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ) |
321 | 320, 314 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ℂ) |
322 | 223 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺‘𝑋) − (𝐺‘𝑅)) ≠ 0) |
323 | 128 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ¬ 0 ∈ ran (ℝ D
𝐺)) |
324 | 320 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
325 | 324, 314,
210 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺)) |
326 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((ℝ D 𝐺)‘𝑤) = 0 → (((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺))) |
327 | 325, 326 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((ℝ D 𝐺)‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺))) |
328 | 327 | necon3bd 2957 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (¬ 0 ∈ ran (ℝ D
𝐺) → ((ℝ D 𝐺)‘𝑤) ≠ 0)) |
329 | 323, 328 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ≠ 0) |
330 | 319, 309,
315, 321, 322, 329 | divmuleqd 11797 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) ↔ (((𝐹‘𝑋) − (𝐹‘𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺‘𝑋) − (𝐺‘𝑅))))) |
331 | 318, 330 | bitr4d 281 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))) |
332 | 331 | rexbidva 3225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))) |
333 | 285, 332 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))) |
334 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑤 → ((ℝ D 𝐹)‘𝑡) = ((ℝ D 𝐹)‘𝑤)) |
335 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑤 → ((ℝ D 𝐺)‘𝑡) = ((ℝ D 𝐺)‘𝑤)) |
336 | 334, 335 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑤 → (((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))) |
337 | 336 | fvoveq1d 7297 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑤 → (abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶))) |
338 | 337 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑤 → ((abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸)) |
339 | | lhop1lem.t |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸) |
340 | 339 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸) |
341 | 267 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐷)) |
342 | 338, 340,
341 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸) |
343 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶))) |
344 | 343 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → ((abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸)) |
345 | 342, 344 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) < 𝐸)) |
346 | 345 | rexlimdva 3213 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) < 𝐸)) |
347 | 333, 346 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) < 𝐸) |
348 | 227, 228,
347 | ltled 11123 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) ≤ 𝐸) |
349 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑅 → (𝐹‘𝑢) = (𝐹‘𝑅)) |
350 | 349 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑅 → ((𝐹‘𝑋) − (𝐹‘𝑢)) = ((𝐹‘𝑋) − (𝐹‘𝑅))) |
351 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑅 → (𝐺‘𝑢) = (𝐺‘𝑅)) |
352 | 351 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑅 → ((𝐺‘𝑋) − (𝐺‘𝑢)) = ((𝐺‘𝑋) − (𝐺‘𝑅))) |
353 | 350, 352 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = 𝑅 → (((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) = (((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅)))) |
354 | 353 | fvoveq1d 7297 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑅 → (abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) = (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶))) |
355 | 354 | breq1d 5084 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑅 → ((abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) ≤ 𝐸)) |
356 | 355 | rspcev 3561 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ∧ (abs‘((((𝐹‘𝑋) − (𝐹‘𝑅)) / ((𝐺‘𝑋) − (𝐺‘𝑅))) − 𝐶)) ≤ 𝐸) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸) |
357 | 105, 348,
356 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸) |
358 | 357 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸) |
359 | | ssrexv 3988 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴(ball‘(abs ∘ −
))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → (∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸)) |
360 | 57, 358, 359 | syl2imc 41 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) ∧ (𝑟 ∈ ℝ+ ∧ 𝑟 < (𝑋 − 𝐴))) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸)) |
361 | 360 | anassrs 468 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < (𝑋 − 𝐴)) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸)) |
362 | 361 | expimpd 454 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 < (𝑋 − 𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸)) |
363 | 362 | rexlimdva 3213 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → (∃𝑟 ∈ ℝ+
(𝑟 < (𝑋 − 𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸)) |
364 | 49, 363 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸) |
365 | | inss2 4163 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ ((𝐴(,)𝑋) ∖ {𝐴}) |
366 | | difss 4066 |
. . . . . . . . . . . . . 14
⊢ ((𝐴(,)𝑋) ∖ {𝐴}) ⊆ (𝐴(,)𝑋) |
367 | 365, 366 | sstri 3930 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋) |
368 | 367 | sseli 3917 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → 𝑢 ∈ (𝐴(,)𝑋)) |
369 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑢 → (𝐹‘𝑧) = (𝐹‘𝑢)) |
370 | 369 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑢 → ((𝐹‘𝑋) − (𝐹‘𝑧)) = ((𝐹‘𝑋) − (𝐹‘𝑢))) |
371 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑢 → (𝐺‘𝑧) = (𝐺‘𝑢)) |
372 | 371 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑢 → ((𝐺‘𝑋) − (𝐺‘𝑧)) = ((𝐺‘𝑋) − (𝐺‘𝑢))) |
373 | 370, 372 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑢 → (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))) = (((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢)))) |
374 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) |
375 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) ∈ V |
376 | 373, 374,
375 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (𝐴(,)𝑋) → ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) = (((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢)))) |
377 | 376 | fvoveq1d 7297 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ (𝐴(,)𝑋) → (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) = (abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶))) |
378 | 377 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (𝐴(,)𝑋) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸)) |
379 | 368, 378 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸)) |
380 | 379 | rexbiia 3180 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
(𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹‘𝑋) − (𝐹‘𝑢)) / ((𝐺‘𝑋) − (𝐺‘𝑢))) − 𝐶)) ≤ 𝐸) |
381 | 364, 380 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸) |
382 | | ovex 7308 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))) ∈ V |
383 | 382, 374 | fnmpti 6576 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) Fn (𝐴(,)𝑋) |
384 | | fvoveq1 7298 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) → (abs‘(𝑥 − 𝐶)) = (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶))) |
385 | 384 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) → ((abs‘(𝑥 − 𝐶)) ≤ 𝐸 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)) |
386 | 385 | rexima 7113 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) Fn (𝐴(,)𝑋) ∧ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)) → (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥 − 𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)) |
387 | 383, 367,
386 | mp2an 689 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥 − 𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸) |
388 | 381, 387 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → ∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥 − 𝐶)) ≤ 𝐸) |
389 | | dfrex2 3170 |
. . . . . . . 8
⊢
(∃𝑥 ∈
((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥 − 𝐶)) ≤ 𝐸 ↔ ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥 − 𝐶)) ≤ 𝐸) |
390 | 388, 389 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥 − 𝐶)) ≤ 𝐸) |
391 | | ssrab 4006 |
. . . . . . . 8
⊢ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} ↔ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ ℂ ∧ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥 − 𝐶)) ≤ 𝐸)) |
392 | 391 | simprbi 497 |
. . . . . . 7
⊢ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥 − 𝐶)) ≤ 𝐸) |
393 | 390, 392 | nsyl 140 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld)
∧ 𝐴 ∈ 𝑣)) → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}) |
394 | 393 | expr 457 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈
(TopOpen‘ℂfld)) → (𝐴 ∈ 𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸})) |
395 | 394 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸})) |
396 | | ralinexa 3191 |
. . . 4
⊢
(∀𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}) ↔ ¬ ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸})) |
397 | 395, 396 | sylib 217 |
. . 3
⊢ (𝜑 → ¬ ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸})) |
398 | | fvoveq1 7298 |
. . . . . . . 8
⊢ (𝑥 = ((𝐹‘𝑋) / (𝐺‘𝑋)) → (abs‘(𝑥 − 𝐶)) = (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶))) |
399 | 398 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = ((𝐹‘𝑋) / (𝐺‘𝑋)) → ((abs‘(𝑥 − 𝐶)) ≤ 𝐸 ↔ (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) ≤ 𝐸)) |
400 | 399 | notbid 318 |
. . . . . 6
⊢ (𝑥 = ((𝐹‘𝑋) / (𝐺‘𝑋)) → (¬ (abs‘(𝑥 − 𝐶)) ≤ 𝐸 ↔ ¬ (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) ≤ 𝐸)) |
401 | 400 | elrab3 3625 |
. . . . 5
⊢ (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ ℂ → (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) ≤ 𝐸)) |
402 | 21, 401 | syl 17 |
. . . 4
⊢ (𝜑 → (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) ≤ 𝐸)) |
403 | | eleq2 2827 |
. . . . . 6
⊢ (𝑢 = {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ 𝑢 ↔ ((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸})) |
404 | | sseq2 3947 |
. . . . . . . 8
⊢ (𝑢 = {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸})) |
405 | 404 | anbi2d 629 |
. . . . . . 7
⊢ (𝑢 = {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → ((𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ (𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}))) |
406 | 405 | rexbidv 3226 |
. . . . . 6
⊢ (𝑢 = {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → (∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}))) |
407 | 403, 406 | imbi12d 345 |
. . . . 5
⊢ (𝑢 = {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → ((((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)) ↔ (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸})))) |
408 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝐹‘𝑋) ∈ ℂ) |
409 | 1 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑧) ∈ ℝ) |
410 | 131, 409 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝐹‘𝑧) ∈ ℝ) |
411 | 410 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (𝐹‘𝑧) ∈ ℂ) |
412 | 408, 411 | subcld 11332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ((𝐹‘𝑋) − (𝐹‘𝑧)) ∈ ℂ) |
413 | 130, 134 | subcld 11332 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺‘𝑋) − (𝐺‘𝑧)) ∈ ℂ) |
414 | | eldifsn 4720 |
. . . . . . . . 9
⊢ (((𝐺‘𝑋) − (𝐺‘𝑧)) ∈ (ℂ ∖ {0}) ↔
(((𝐺‘𝑋) − (𝐺‘𝑧)) ∈ ℂ ∧ ((𝐺‘𝑋) − (𝐺‘𝑧)) ≠ 0)) |
415 | 413, 220,
414 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺‘𝑋) − (𝐺‘𝑧)) ∈ (ℂ ∖
{0})) |
416 | | ssidd 3944 |
. . . . . . . 8
⊢ (𝜑 → ℂ ⊆
ℂ) |
417 | | difss 4066 |
. . . . . . . . 9
⊢ (ℂ
∖ {0}) ⊆ ℂ |
418 | 417 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ℂ ∖ {0})
⊆ ℂ) |
419 | 46 | cnfldtopon 23946 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
420 | | cnex 10952 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
421 | 420 | difexi 5252 |
. . . . . . . . . 10
⊢ (ℂ
∖ {0}) ∈ V |
422 | | txrest 22782 |
. . . . . . . . . 10
⊢
((((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) ∧
(ℂ ∈ V ∧ (ℂ ∖ {0}) ∈ V)) →
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
(ℂ ∖ {0}))) = (((TopOpen‘ℂfld)
↾t ℂ) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0})))) |
423 | 419, 419,
420, 421, 422 | mp4an 690 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
(ℂ ∖ {0}))) = (((TopOpen‘ℂfld)
↾t ℂ) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) |
424 | | unicntop 23949 |
. . . . . . . . . . . 12
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
425 | 424 | restid 17144 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
426 | 419, 425 | ax-mp 5 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
427 | 426 | oveq1i 7285 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ↾t ℂ)
×t ((TopOpen‘ℂfld) ↾t
(ℂ ∖ {0}))) = ((TopOpen‘ℂfld)
×t ((TopOpen‘ℂfld) ↾t
(ℂ ∖ {0}))) |
428 | 423, 427 | eqtr2i 2767 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) = (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
(ℂ ∖ {0}))) |
429 | 9 | subid1d 11321 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑋) − 0) = (𝐹‘𝑋)) |
430 | | txtopon 22742 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
→ ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ))) |
431 | 419, 419,
430 | mp2an 689 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) |
432 | 431 | toponrestid 22070 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) |
433 | | limcresi 25049 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) limℂ 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) ↾ (𝐴(,)𝑋)) limℂ 𝐴) |
434 | | ioossre 13140 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝑋) ⊆ ℝ |
435 | | resmpt 5945 |
. . . . . . . . . . . . . 14
⊢ ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑋))) |
436 | 434, 435 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑋)) |
437 | 436 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) ↾ (𝐴(,)𝑋)) limℂ 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑋)) limℂ 𝐴) |
438 | 433, 437 | sseqtri 3957 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) limℂ 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑋)) limℂ 𝐴) |
439 | | cncfmptc 24075 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑋) ∈ ℝ ∧ ℝ ⊆
ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) ∈ (ℝ–cn→ℝ)) |
440 | 8, 154, 154, 439 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) ∈ (ℝ–cn→ℝ)) |
441 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐴 → (𝐹‘𝑋) = (𝐹‘𝑋)) |
442 | 440, 39, 441 | cnmptlimc 25054 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐹‘𝑋)) limℂ 𝐴)) |
443 | 438, 442 | sselid 3919 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑋)) limℂ 𝐴)) |
444 | | limcresi 25049 |
. . . . . . . . . . . 12
⊢ (𝐹 limℂ 𝐴) ⊆ ((𝐹 ↾ (𝐴(,)𝑋)) limℂ 𝐴) |
445 | 1, 114 | feqresmpt 6838 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑧))) |
446 | 445 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝑋)) limℂ 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑧)) limℂ 𝐴)) |
447 | 444, 446 | sseqtrid 3973 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 limℂ 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑧)) limℂ 𝐴)) |
448 | | lhop1.f0 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐴)) |
449 | 447, 448 | sseldd 3922 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹‘𝑧)) limℂ 𝐴)) |
450 | 46 | subcn 24029 |
. . . . . . . . . . 11
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
451 | | 0cn 10967 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℂ |
452 | | opelxpi 5626 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑋) ∈ ℂ ∧ 0 ∈ ℂ)
→ 〈(𝐹‘𝑋), 0〉 ∈ (ℂ
× ℂ)) |
453 | 9, 451, 452 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈(𝐹‘𝑋), 0〉 ∈ (ℂ ×
ℂ)) |
454 | 431 | toponunii 22065 |
. . . . . . . . . . . 12
⊢ (ℂ
× ℂ) = ∪
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
455 | 454 | cncnpi 22429 |
. . . . . . . . . . 11
⊢ ((
− ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) ∧ 〈(𝐹‘𝑋), 0〉 ∈ (ℂ × ℂ))
→ − ∈ ((((TopOpen‘ℂfld)
×t (TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈(𝐹‘𝑋), 0〉)) |
456 | 450, 453,
455 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → − ∈
((((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈(𝐹‘𝑋), 0〉)) |
457 | 408, 411,
416, 416, 46, 432, 443, 449, 456 | limccnp2 25056 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹‘𝑋) − (𝐹‘𝑧))) limℂ 𝐴)) |
458 | 429, 457 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹‘𝑋) − (𝐹‘𝑧))) limℂ 𝐴)) |
459 | 12 | subid1d 11321 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐺‘𝑋) − 0) = (𝐺‘𝑋)) |
460 | | limcresi 25049 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) limℂ 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) ↾ (𝐴(,)𝑋)) limℂ 𝐴) |
461 | | resmpt 5945 |
. . . . . . . . . . . . . 14
⊢ ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑋))) |
462 | 434, 461 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑋)) |
463 | 462 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) ↾ (𝐴(,)𝑋)) limℂ 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑋)) limℂ 𝐴) |
464 | 460, 463 | sseqtri 3957 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) limℂ 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑋)) limℂ 𝐴) |
465 | | cncfmptc 24075 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘𝑋) ∈ ℝ ∧ ℝ ⊆
ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) ∈ (ℝ–cn→ℝ)) |
466 | 11, 154, 154, 465 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) ∈ (ℝ–cn→ℝ)) |
467 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐴 → (𝐺‘𝑋) = (𝐺‘𝑋)) |
468 | 466, 39, 467 | cnmptlimc 25054 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐺‘𝑋)) limℂ 𝐴)) |
469 | 464, 468 | sselid 3919 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑋)) limℂ 𝐴)) |
470 | | limcresi 25049 |
. . . . . . . . . . . 12
⊢ (𝐺 limℂ 𝐴) ⊆ ((𝐺 ↾ (𝐴(,)𝑋)) limℂ 𝐴) |
471 | 10, 114 | feqresmpt 6838 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑧))) |
472 | 471 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺 ↾ (𝐴(,)𝑋)) limℂ 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑧)) limℂ 𝐴)) |
473 | 470, 472 | sseqtrid 3973 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 limℂ 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑧)) limℂ 𝐴)) |
474 | | lhop1.g0 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈ (𝐺 limℂ 𝐴)) |
475 | 473, 474 | sseldd 3922 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺‘𝑧)) limℂ 𝐴)) |
476 | | opelxpi 5626 |
. . . . . . . . . . . 12
⊢ (((𝐺‘𝑋) ∈ ℂ ∧ 0 ∈ ℂ)
→ 〈(𝐺‘𝑋), 0〉 ∈ (ℂ
× ℂ)) |
477 | 12, 451, 476 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈(𝐺‘𝑋), 0〉 ∈ (ℂ ×
ℂ)) |
478 | 454 | cncnpi 22429 |
. . . . . . . . . . 11
⊢ ((
− ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) ∧ 〈(𝐺‘𝑋), 0〉 ∈ (ℂ × ℂ))
→ − ∈ ((((TopOpen‘ℂfld)
×t (TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈(𝐺‘𝑋), 0〉)) |
479 | 450, 477,
478 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → − ∈
((((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈(𝐺‘𝑋), 0〉)) |
480 | 130, 134,
416, 416, 46, 432, 469, 475, 479 | limccnp2 25056 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐺‘𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺‘𝑋) − (𝐺‘𝑧))) limℂ 𝐴)) |
481 | 459, 480 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺‘𝑋) − (𝐺‘𝑧))) limℂ 𝐴)) |
482 | | eqid 2738 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t (ℂ
∖ {0})) = ((TopOpen‘ℂfld) ↾t
(ℂ ∖ {0})) |
483 | 46, 482 | divcn 24031 |
. . . . . . . . 9
⊢ / ∈
(((TopOpen‘ℂfld) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) Cn (TopOpen‘ℂfld)) |
484 | | eldifsn 4720 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑋) ∈ (ℂ ∖ {0}) ↔
((𝐺‘𝑋) ∈ ℂ ∧ (𝐺‘𝑋) ≠ 0)) |
485 | 12, 20, 484 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑋) ∈ (ℂ ∖
{0})) |
486 | 9, 485 | opelxpd 5627 |
. . . . . . . . 9
⊢ (𝜑 → 〈(𝐹‘𝑋), (𝐺‘𝑋)〉 ∈ (ℂ × (ℂ
∖ {0}))) |
487 | | resttopon 22312 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (ℂ ∖ {0}) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0})) ∈ (TopOn‘(ℂ ∖ {0}))) |
488 | 419, 417,
487 | mp2an 689 |
. . . . . . . . . . . 12
⊢
((TopOpen‘ℂfld) ↾t (ℂ
∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})) |
489 | | txtopon 22742 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ((TopOpen‘ℂfld) ↾t (ℂ
∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))) →
((TopOpen‘ℂfld) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) ∈ (TopOn‘(ℂ × (ℂ ∖
{0})))) |
490 | 419, 488,
489 | mp2an 689 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) ∈ (TopOn‘(ℂ × (ℂ ∖
{0}))) |
491 | 490 | toponunii 22065 |
. . . . . . . . . 10
⊢ (ℂ
× (ℂ ∖ {0})) = ∪
((TopOpen‘ℂfld) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) |
492 | 491 | cncnpi 22429 |
. . . . . . . . 9
⊢ (( /
∈ (((TopOpen‘ℂfld) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) Cn (TopOpen‘ℂfld)) ∧ 〈(𝐹‘𝑋), (𝐺‘𝑋)〉 ∈ (ℂ × (ℂ
∖ {0}))) → / ∈ ((((TopOpen‘ℂfld)
×t ((TopOpen‘ℂfld) ↾t
(ℂ ∖ {0}))) CnP
(TopOpen‘ℂfld))‘〈(𝐹‘𝑋), (𝐺‘𝑋)〉)) |
493 | 483, 486,
492 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → / ∈
((((TopOpen‘ℂfld) ×t
((TopOpen‘ℂfld) ↾t (ℂ ∖
{0}))) CnP (TopOpen‘ℂfld))‘〈(𝐹‘𝑋), (𝐺‘𝑋)〉)) |
494 | 412, 415,
416, 418, 46, 428, 458, 481, 493 | limccnp2 25056 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) limℂ 𝐴)) |
495 | 412, 413,
220 | divcld 11751 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝑋)) → (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧))) ∈ ℂ) |
496 | 495 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))):(𝐴(,)𝑋)⟶ℂ) |
497 | 434, 153 | sstri 3930 |
. . . . . . . . 9
⊢ (𝐴(,)𝑋) ⊆ ℂ |
498 | 497 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(,)𝑋) ⊆ ℂ) |
499 | 496, 498,
66, 46 | ellimc2 25041 |
. . . . . . 7
⊢ (𝜑 → (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) limℂ 𝐴) ↔ (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ ℂ ∧ ∀𝑢 ∈
(TopOpen‘ℂfld)(((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢))))) |
500 | 494, 499 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ ℂ ∧ ∀𝑢 ∈
(TopOpen‘ℂfld)(((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))) |
501 | 500 | simprd 496 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈
(TopOpen‘ℂfld)(((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ 𝑢 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢))) |
502 | | notrab 4245 |
. . . . . 6
⊢ (ℂ
∖ {𝑥 ∈ ℂ
∣ (abs‘(𝑥
− 𝐶)) ≤ 𝐸}) = {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} |
503 | 68 | cnmetdval 23934 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝐶 − 𝑥))) |
504 | | abssub 15038 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(abs‘(𝐶 − 𝑥)) = (abs‘(𝑥 − 𝐶))) |
505 | 503, 504 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥 − 𝐶))) |
506 | 24, 505 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥 − 𝐶))) |
507 | 506 | breq1d 5084 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐶(abs ∘ − )𝑥) ≤ 𝐸 ↔ (abs‘(𝑥 − 𝐶)) ≤ 𝐸)) |
508 | 507 | rabbidva 3413 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (abs‘(𝑥 − 𝐶)) ≤ 𝐸}) |
509 | 32 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (abs ∘ − )
∈ (∞Met‘ℂ)) |
510 | 28 | rexrd 11025 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈
ℝ*) |
511 | | eqid 2738 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} |
512 | 47, 511 | blcld 23661 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℝ*) → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈
(Clsd‘(TopOpen‘ℂfld))) |
513 | 509, 24, 510, 512 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈
(Clsd‘(TopOpen‘ℂfld))) |
514 | 508, 513 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ (abs‘(𝑥 − 𝐶)) ≤ 𝐸} ∈
(Clsd‘(TopOpen‘ℂfld))) |
515 | 424 | cldopn 22182 |
. . . . . . 7
⊢ ({𝑥 ∈ ℂ ∣
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} ∈
(Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖
{𝑥 ∈ ℂ ∣
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}) ∈
(TopOpen‘ℂfld)) |
516 | 514, 515 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ℂ ∖ {𝑥 ∈ ℂ ∣
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}) ∈
(TopOpen‘ℂfld)) |
517 | 502, 516 | eqeltrrid 2844 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} ∈
(TopOpen‘ℂfld)) |
518 | 407, 501,
517 | rspcdva 3562 |
. . . 4
⊢ (𝜑 → (((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸} → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}))) |
519 | 402, 518 | sylbird 259 |
. . 3
⊢ (𝜑 → (¬ (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) ≤ 𝐸 → ∃𝑣 ∈
(TopOpen‘ℂfld)(𝐴 ∈ 𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹‘𝑋) − (𝐹‘𝑧)) / ((𝐺‘𝑋) − (𝐺‘𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬
(abs‘(𝑥 − 𝐶)) ≤ 𝐸}))) |
520 | 397, 519 | mt3d 148 |
. 2
⊢ (𝜑 → (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) ≤ 𝐸) |
521 | 28 | recnd 11003 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ ℂ) |
522 | 521 | mulid2d 10993 |
. . 3
⊢ (𝜑 → (1 · 𝐸) = 𝐸) |
523 | | 1red 10976 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
524 | | 1lt2 12144 |
. . . . 5
⊢ 1 <
2 |
525 | 524 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 < 2) |
526 | 523, 30, 27, 525 | ltmul1dd 12827 |
. . 3
⊢ (𝜑 → (1 · 𝐸) < (2 · 𝐸)) |
527 | 522, 526 | eqbrtrrd 5098 |
. 2
⊢ (𝜑 → 𝐸 < (2 · 𝐸)) |
528 | 26, 28, 31, 520, 527 | lelttrd 11133 |
1
⊢ (𝜑 → (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) < (2 · 𝐸)) |