MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1lem Structured version   Visualization version   GIF version

Theorem lhop1lem 26072
Description: Lemma for lhop1 26073. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
lhop1lem.e (𝜑𝐸 ∈ ℝ+)
lhop1lem.d (𝜑𝐷 ∈ ℝ)
lhop1lem.db (𝜑𝐷𝐵)
lhop1lem.x (𝜑𝑋 ∈ (𝐴(,)𝐷))
lhop1lem.t (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
lhop1lem.r 𝑅 = (𝐴 + (𝑟 / 2))
Assertion
Ref Expression
lhop1lem (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Distinct variable groups:   𝑧,𝑟,𝐵   𝑡,𝐷   𝜑,𝑟,𝑧   𝑧,𝑅   𝑡,𝑟,𝐴,𝑧   𝐸,𝑟,𝑡   𝑋,𝑟,𝑧   𝐶,𝑟,𝑡,𝑧   𝐹,𝑟,𝑡,𝑧   𝐺,𝑟,𝑡,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡)   𝐷(𝑧,𝑟)   𝑅(𝑡,𝑟)   𝐸(𝑧)   𝑋(𝑡)

Proof of Theorem lhop1lem
Dummy variables 𝑣 𝑥 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 lhop1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
3 lhop1lem.db . . . . . . . . 9 (𝜑𝐷𝐵)
4 iooss2 13443 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐷𝐵) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
52, 3, 4syl2anc 583 . . . . . . . 8 (𝜑 → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
6 lhop1lem.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴(,)𝐷))
75, 6sseldd 4009 . . . . . . 7 (𝜑𝑋 ∈ (𝐴(,)𝐵))
81, 7ffvelcdmd 7119 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ ℝ)
98recnd 11318 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ℂ)
10 lhop1.g . . . . . . 7 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
1110, 7ffvelcdmd 7119 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ ℝ)
1211recnd 11318 . . . . 5 (𝜑 → (𝐺𝑋) ∈ ℂ)
13 lhop1.gn0 . . . . . 6 (𝜑 → ¬ 0 ∈ ran 𝐺)
1410ffnd 6748 . . . . . . . . 9 (𝜑𝐺 Fn (𝐴(,)𝐵))
15 fnfvelrn 7114 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐺𝑋) ∈ ran 𝐺)
1614, 7, 15syl2anc 583 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ran 𝐺)
17 eleq1 2832 . . . . . . . 8 ((𝐺𝑋) = 0 → ((𝐺𝑋) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
1816, 17syl5ibcom 245 . . . . . . 7 (𝜑 → ((𝐺𝑋) = 0 → 0 ∈ ran 𝐺))
1918necon3bd 2960 . . . . . 6 (𝜑 → (¬ 0 ∈ ran 𝐺 → (𝐺𝑋) ≠ 0))
2013, 19mpd 15 . . . . 5 (𝜑 → (𝐺𝑋) ≠ 0)
219, 12, 20divcld 12070 . . . 4 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ)
22 limccl 25930 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ⊆ ℂ
23 lhop1.c . . . . 5 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2422, 23sselid 4006 . . . 4 (𝜑𝐶 ∈ ℂ)
2521, 24subcld 11647 . . 3 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) − 𝐶) ∈ ℂ)
2625abscld 15485 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ∈ ℝ)
27 lhop1lem.e . . 3 (𝜑𝐸 ∈ ℝ+)
2827rpred 13099 . 2 (𝜑𝐸 ∈ ℝ)
29 2re 12367 . . . 4 2 ∈ ℝ
3029a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
3130, 28remulcld 11320 . 2 (𝜑 → (2 · 𝐸) ∈ ℝ)
32 cnxmet 24814 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
3332a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
34 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝑣 ∈ (TopOpen‘ℂfld))
35 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝐴𝑣)
36 eliooord 13466 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐷) → (𝐴 < 𝑋𝑋 < 𝐷))
376, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝑋𝑋 < 𝐷))
3837simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑋)
39 lhop1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
40 ioossre 13468 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐷) ⊆ ℝ
4140, 6sselid 4006 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
42 difrp 13095 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4339, 41, 42syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4438, 43mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐴) ∈ ℝ+)
4544adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (𝑋𝐴) ∈ ℝ+)
46 eqid 2740 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746cnfldtopn 24823 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
4847mopni3 24528 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣) ∧ (𝑋𝐴) ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
4933, 34, 35, 45, 48syl31anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
50 ssrin 4263 . . . . . . . . . . . . . . . 16 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ (𝐴(,)𝑋)))
51 lbioo 13438 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐴 ∈ (𝐴(,)𝑋)
52 disjsn 4736 . . . . . . . . . . . . . . . . . . 19 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝑋))
5351, 52mpbir 231 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝑋) ∩ {𝐴}) = ∅
54 disj3 4477 . . . . . . . . . . . . . . . . . 18 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴}))
5553, 54mpbi 230 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴})
5655ineq2i 4238 . . . . . . . . . . . . . . . 16 (𝑣 ∩ (𝐴(,)𝑋)) = (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))
5750, 56sseqtrdi 4059 . . . . . . . . . . . . . . 15 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))
58 lhop1lem.r . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 = (𝐴 + (𝑟 / 2))
5939adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ)
60 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ+)
6160rpred 13099 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ)
6261rehalfcld 12540 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
6359, 62readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) ∈ ℝ)
6458, 63eqeltrid 2848 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ)
6564recnd 11318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℂ)
6639recnd 11318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ ℂ)
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℂ)
68 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
6968cnmetdval 24812 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7065, 67, 69syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7158oveq1i 7458 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅𝐴) = ((𝐴 + (𝑟 / 2)) − 𝐴)
7261recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℂ)
7372halfcld 12538 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℂ)
7467, 73pncan2d 11649 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) − 𝐴) = (𝑟 / 2))
7571, 74eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅𝐴) = (𝑟 / 2))
7675fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑅𝐴)) = (abs‘(𝑟 / 2)))
7760rphalfcld 13111 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ+)
7877rpred 13099 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
7977rpge0d 13103 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 0 ≤ (𝑟 / 2))
8078, 79absidd 15471 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
8170, 76, 803eqtrd 2784 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (𝑟 / 2))
82 rphalflt 13086 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
8360, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < 𝑟)
8481, 83eqbrtrd 5188 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) < 𝑟)
8532a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8661rexrd 11340 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ*)
87 elbl3 24423 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8885, 86, 67, 65, 87syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8984, 88mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟))
9059, 77ltaddrpd 13132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < (𝐴 + (𝑟 / 2)))
9190, 58breqtrrdi 5208 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < 𝑅)
9241adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ)
9392, 59resubcld 11718 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑋𝐴) ∈ ℝ)
94 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 < (𝑋𝐴))
9578, 61, 93, 83, 94lttrd 11451 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < (𝑋𝐴))
9659, 78, 92ltaddsub2d 11891 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) < 𝑋 ↔ (𝑟 / 2) < (𝑋𝐴)))
9795, 96mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) < 𝑋)
9858, 97eqbrtrid 5201 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 < 𝑋)
9959rexrd 11340 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ*)
10041rexrd 11340 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ℝ*)
101100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ*)
102 elioo2 13448 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝑋 ∈ ℝ*) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10399, 101, 102syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10464, 91, 98, 103mpbir3and 1342 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝑋))
10589, 104elind 4223 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)))
1069adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑋) ∈ ℂ)
1071adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108 lhop1lem.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐷 ∈ ℝ)
109108rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐷 ∈ ℝ*)
11037simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑋 < 𝐷)
11141, 108, 110ltled 11438 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑋𝐷)
112100, 109, 2, 111, 3xrletrd 13224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋𝐵)
113 iooss2 13443 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
1142, 112, 113syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
115114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
116115, 104sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝐵))
117107, 116ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℝ)
118117recnd 11318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℂ)
119106, 118subcld 11647 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
12012adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑋) ∈ ℂ)
12110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
122121, 116ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℝ)
123122recnd 11318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℂ)
124120, 123subcld 11647 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
125 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑅 → (𝐺𝑧) = (𝐺𝑅))
126125oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑅 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑅)))
127126neeq1d 3006 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑅 → (((𝐺𝑋) − (𝐺𝑧)) ≠ 0 ↔ ((𝐺𝑋) − (𝐺𝑅)) ≠ 0))
128 lhop1.gd0 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
129128adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
13012adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑋) ∈ ℂ)
131114sselda 4008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝐴(,)𝐵))
13210ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
133131, 132syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℝ)
134133recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℂ)
135130, 134subeq0ad 11657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 ↔ (𝐺𝑋) = (𝐺𝑧)))
136 ioossre 13468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴(,)𝐵) ⊆ ℝ
137136, 131sselid 4006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ)
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 ∈ ℝ)
13941ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑋 ∈ ℝ)
140 eliooord 13466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝐴(,)𝑋) → (𝐴 < 𝑧𝑧 < 𝑋))
141140adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐴 < 𝑧𝑧 < 𝑋))
142141simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 < 𝑋)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 < 𝑋)
14439rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐴 ∈ ℝ*)
145144adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 ∈ ℝ*)
1462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐵 ∈ ℝ*)
147141simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 < 𝑧)
148100, 109, 2, 110, 3xrltletrd 13223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑋 < 𝐵)
149148adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 < 𝐵)
150 iccssioo 13476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝑧𝑋 < 𝐵)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
151145, 146, 147, 149, 150syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
152151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
153 ax-resscn 11241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ℝ ⊆ ℂ
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ℝ ⊆ ℂ)
155 fss 6763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
15610, 153, 155sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
157136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
158 lhop1.ig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
159 dvcn 25977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
160154, 156, 157, 158, 159syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
161 cncfcdm 24943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((ℝ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
162153, 160, 161sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
16310, 162mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
164163ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
165 rescncf 24942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ)))
166152, 164, 165sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ))
167153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ℝ ⊆ ℂ)
168156ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
169136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐴(,)𝐵) ⊆ ℝ)
170152, 136sstrdi 4021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ ℝ)
17146tgioo2 24844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
17246, 171dvres 25966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑧[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
173167, 168, 169, 170, 172syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
174 iccntr 24862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
175138, 139, 174syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
176175reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
177173, 176eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
178177dmeqd 5930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
179 ioossicc 13493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧(,)𝑋) ⊆ (𝑧[,]𝑋)
180179, 152sstrid 4020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ (𝐴(,)𝐵))
181158ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
182180, 181sseqtrrd 4050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺))
183 ssdmres 6042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
184182, 183sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
185178, 184eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = (𝑧(,)𝑋))
186137rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ*)
187100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ*)
18841adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ)
189137, 188, 142ltled 11438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧𝑋)
190 ubicc2 13525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑋 ∈ (𝑧[,]𝑋))
191186, 187, 189, 190syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ (𝑧[,]𝑋))
192191fvresd 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = (𝐺𝑋))
193 lbicc2 13524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑧 ∈ (𝑧[,]𝑋))
194186, 187, 189, 193syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝑧[,]𝑋))
195194fvresd 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = (𝐺𝑧))
196192, 195eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) ↔ (𝐺𝑋) = (𝐺𝑧)))
197196biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧))
198197eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋))
199138, 139, 143, 166, 185, 198rolle 26048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0)
200177fveq1d 6922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤))
201 fvres 6939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝑧(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
202200, 201sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
203 dvf 25962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
204158feq2d 6733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
205203, 204mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
206205ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
207206ffnd 6748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
208207adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
209180sselda 4008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
210 fnfvelrn 7114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
211208, 209, 210syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
212202, 211eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺))
213 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
214212, 213syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
215214rexlimdva 3161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
216199, 215mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 0 ∈ ran (ℝ D 𝐺))
217216ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) = (𝐺𝑧) → 0 ∈ ran (ℝ D 𝐺)))
218135, 217sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 → 0 ∈ ran (ℝ D 𝐺)))
219218necon3bd 2960 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
220129, 219mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
221220ralrimiva 3152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
222221adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
223127, 222, 104rspcdva 3636 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
224119, 124, 223divcld 12070 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) ∈ ℂ)
22524adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐶 ∈ ℂ)
226224, 225subcld 11647 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶) ∈ ℂ)
227226abscld 15485 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ∈ ℝ)
22828adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐸 ∈ ℝ)
229109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐷 ∈ ℝ*)
230110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 < 𝐷)
231 iccssioo 13476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝑅𝑋 < 𝐷)) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
23299, 229, 91, 230, 231syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
2335adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
234232, 233sstrd 4019 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐵))
235 fss 6763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
2361, 153, 235sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
237 lhop1.if . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
238 dvcn 25977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
239154, 236, 157, 237, 238syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
240 cncfcdm 24943 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
241153, 239, 240sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2421, 241mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
243242adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
244 rescncf 24942 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
245234, 243, 244sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
246163adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
247 rescncf 24942 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
248234, 246, 247sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
249153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ℝ ⊆ ℂ)
250236adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
251136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐵) ⊆ ℝ)
252 iccssre 13489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑅[,]𝑋) ⊆ ℝ)
25364, 92, 252syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ ℝ)
25446, 171dvres 25966 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
255249, 250, 251, 253, 254syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
256 iccntr 24862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
25764, 92, 256syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
258257reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
259255, 258eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
260259dmeqd 5930 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
26159, 64, 91ltled 11438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴𝑅)
262 iooss1 13442 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℝ*𝐴𝑅) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
26399, 261, 262syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
264111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋𝐷)
265 iooss2 13443 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐷 ∈ ℝ*𝑋𝐷) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
266229, 264, 265syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
267263, 266sstrd 4019 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐷))
268267, 233sstrd 4019 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐵))
269237adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
270268, 269sseqtrrd 4050 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹))
271 ssdmres 6042 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
272270, 271sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
273260, 272eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
274156adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
27546, 171dvres 25966 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
276249, 274, 251, 253, 275syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
277257reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
278276, 277eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
279278dmeqd 5930 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
280158adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
281268, 280sseqtrrd 4050 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺))
282 ssdmres 6042 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
283281, 282sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
284279, 283eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
28564, 92, 98, 245, 248, 273, 284cmvth 26049 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)))
28664rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ*)
287286adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ ℝ*)
288100ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ ℝ*)
28964, 92, 98ltled 11438 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅𝑋)
290289adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅𝑋)
291 ubicc2 13525 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑋 ∈ (𝑅[,]𝑋))
292287, 288, 290, 291syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ (𝑅[,]𝑋))
293292fvresd 6940 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐹𝑋))
294 lbicc2 13524 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑅 ∈ (𝑅[,]𝑋))
295287, 288, 290, 294syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ (𝑅[,]𝑋))
296295fvresd 6940 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐹𝑅))
297293, 296oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐹𝑋) − (𝐹𝑅)))
298278fveq1d 6922 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤))
299 fvres 6939 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
300298, 299sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
301297, 300oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)))
302292fvresd 6940 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐺𝑋))
303295fvresd 6940 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐺𝑅))
304302, 303oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐺𝑋) − (𝐺𝑅)))
305259fveq1d 6922 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤))
306 fvres 6939 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
307305, 306sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
308304, 307oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)))
309124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
310 dvf 25962 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
311237feq2d 6733 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
312310, 311mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
313312ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
314268sselda 4008 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
315313, 314ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
316309, 315mulcomd 11311 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
317308, 316eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
318301, 317eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
319119adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
320205ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
321320, 314ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ℂ)
322223adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
323128ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
324320ffnd 6748 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
325324, 314, 210syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
326 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ D 𝐺)‘𝑤) = 0 → (((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
327325, 326syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((ℝ D 𝐺)‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
328327necon3bd 2960 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑤) ≠ 0))
329323, 328mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ≠ 0)
330319, 309, 315, 321, 322, 329divmuleqd 12116 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
331318, 330bitr4d 282 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
332331rexbidva 3183 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
333285, 332mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
334 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐹)‘𝑡) = ((ℝ D 𝐹)‘𝑤))
335 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐺)‘𝑡) = ((ℝ D 𝐺)‘𝑤))
336334, 335oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → (((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
337336fvoveq1d 7470 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑤 → (abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
338337breq1d 5176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑤 → ((abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
339 lhop1lem.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
340339ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
341267sselda 4008 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐷))
342338, 340, 341rspcdva 3636 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸)
343 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
344343breq1d 5176 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → ((abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
345342, 344syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
346345rexlimdva 3161 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
347333, 346mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸)
348227, 228, 347ltled 11438 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸)
349 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐹𝑢) = (𝐹𝑅))
350349oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐹𝑋) − (𝐹𝑢)) = ((𝐹𝑋) − (𝐹𝑅)))
351 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐺𝑢) = (𝐺𝑅))
352351oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐺𝑋) − (𝐺𝑢)) = ((𝐺𝑋) − (𝐺𝑅)))
353350, 352oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑅 → (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) = (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))))
354353fvoveq1d 7470 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑅 → (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)))
355354breq1d 5176 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑅 → ((abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸))
356355rspcev 3635 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ∧ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
357105, 348, 356syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
358357adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
359 ssrexv 4078 . . . . . . . . . . . . . . 15 (((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → (∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36057, 358, 359syl2imc 41 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
361360anassrs 467 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < (𝑋𝐴)) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
362361expimpd 453 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
363362rexlimdva 3161 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36449, 363mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
365 inss2 4259 . . . . . . . . . . . . . 14 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ ((𝐴(,)𝑋) ∖ {𝐴})
366 difss 4159 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ∖ {𝐴}) ⊆ (𝐴(,)𝑋)
367365, 366sstri 4018 . . . . . . . . . . . . 13 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)
368367sseli 4004 . . . . . . . . . . . 12 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → 𝑢 ∈ (𝐴(,)𝑋))
369 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
370369oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐹𝑋) − (𝐹𝑧)) = ((𝐹𝑋) − (𝐹𝑢)))
371 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐺𝑧) = (𝐺𝑢))
372371oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑢)))
373370, 372oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑧 = 𝑢 → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
374 eqid 2740 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))
375 ovex 7481 . . . . . . . . . . . . . . 15 (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) ∈ V
376373, 374, 375fvmpt 7029 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴(,)𝑋) → ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
377376fvoveq1d 7470 . . . . . . . . . . . . 13 (𝑢 ∈ (𝐴(,)𝑋) → (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)))
378377breq1d 5176 . . . . . . . . . . . 12 (𝑢 ∈ (𝐴(,)𝑋) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
379368, 378syl 17 . . . . . . . . . . 11 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
380379rexbiia 3098 . . . . . . . . . 10 (∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
381364, 380sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
382 ovex 7481 . . . . . . . . . . 11 (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ V
383382, 374fnmpti 6723 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋)
384 fvoveq1 7471 . . . . . . . . . . . 12 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → (abs‘(𝑥𝐶)) = (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)))
385384breq1d 5176 . . . . . . . . . . 11 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
386385rexima 7275 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋) ∧ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)) → (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
387383, 367, 386mp2an 691 . . . . . . . . 9 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
388381, 387sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸)
389 dfrex2 3079 . . . . . . . 8 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
390388, 389sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
391 ssrab 4096 . . . . . . . 8 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ ℂ ∧ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸))
392391simprbi 496 . . . . . . 7 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
393390, 392nsyl 140 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})
394393expr 456 . . . . 5 ((𝜑𝑣 ∈ (TopOpen‘ℂfld)) → (𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
395394ralrimiva 3152 . . . 4 (𝜑 → ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
396 ralinexa 3107 . . . 4 (∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}) ↔ ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
397395, 396sylib 218 . . 3 (𝜑 → ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
398 fvoveq1 7471 . . . . . . . 8 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (abs‘(𝑥𝐶)) = (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)))
399398breq1d 5176 . . . . . . 7 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
400399notbid 318 . . . . . 6 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (¬ (abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
401400elrab3 3709 . . . . 5 (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
40221, 401syl 17 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
403 eleq2 2833 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 ↔ ((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
404 sseq2 4035 . . . . . . . 8 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
405404anbi2d 629 . . . . . . 7 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ (𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
406405rexbidv 3185 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
407403, 406imbi12d 344 . . . . 5 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))))
4089adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑋) ∈ ℂ)
4091ffvelcdmda 7118 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
410131, 409syldan 590 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℝ)
411410recnd 11318 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℂ)
412408, 411subcld 11647 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑧)) ∈ ℂ)
413130, 134subcld 11647 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ)
414 eldifsn 4811 . . . . . . . . 9 (((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}) ↔ (((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ ∧ ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
415413, 220, 414sylanbrc 582 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}))
416 ssidd 4032 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
417 difss 4159 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
418417a1i 11 . . . . . . . 8 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
41946cnfldtopon 24824 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
420 cnex 11265 . . . . . . . . . 10 ℂ ∈ V
421420difexi 5348 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
422 txrest 23660 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) ∧ (ℂ ∈ V ∧ (ℂ ∖ {0}) ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))))
423419, 419, 420, 421, 422mp4an 692 . . . . . . . . 9 (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
424 unicntop 24827 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
425424restid 17493 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
426419, 425ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
427426oveq1i 7458 . . . . . . . . 9 (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
428423, 427eqtr2i 2769 . . . . . . . 8 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0})))
4299subid1d 11636 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) = (𝐹𝑋))
430 txtopon 23620 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
431419, 419, 430mp2an 691 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
432431toponrestid 22948 . . . . . . . . . 10 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
433 limcresi 25940 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
434 ioossre 13468 . . . . . . . . . . . . . 14 (𝐴(,)𝑋) ⊆ ℝ
435 resmpt 6066 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)))
436434, 435ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋))
437436oveq1i 7458 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
438433, 437sseqtri 4045 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
439 cncfmptc 24957 . . . . . . . . . . . . 13 (((𝐹𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
4408, 154, 154, 439syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
441 eqidd 2741 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐹𝑋) = (𝐹𝑋))
442440, 39, 441cnmptlimc 25945 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴))
443438, 442sselid 4006 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴))
444 limcresi 25940 . . . . . . . . . . . 12 (𝐹 lim 𝐴) ⊆ ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴)
4451, 114feqresmpt 6991 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)))
446445oveq1d 7463 . . . . . . . . . . . 12 (𝜑 → ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
447444, 446sseqtrid 4061 . . . . . . . . . . 11 (𝜑 → (𝐹 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
448 lhop1.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
449447, 448sseldd 4009 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
45046subcn 24907 . . . . . . . . . . 11 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
451 0cn 11282 . . . . . . . . . . . 12 0 ∈ ℂ
452 opelxpi 5737 . . . . . . . . . . . 12 (((𝐹𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
4539, 451, 452sylancl 585 . . . . . . . . . . 11 (𝜑 → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
454431toponunii 22943 . . . . . . . . . . . 12 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
455454cncnpi 23307 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
456450, 453, 455sylancr 586 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
457408, 411, 416, 416, 46, 432, 443, 449, 456limccnp2 25947 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
458429, 457eqeltrrd 2845 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
45912subid1d 11636 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) = (𝐺𝑋))
460 limcresi 25940 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
461 resmpt 6066 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)))
462434, 461ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋))
463462oveq1i 7458 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
464460, 463sseqtri 4045 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
465 cncfmptc 24957 . . . . . . . . . . . . 13 (((𝐺𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
46611, 154, 154, 465syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
467 eqidd 2741 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐺𝑋) = (𝐺𝑋))
468466, 39, 467cnmptlimc 25945 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴))
469464, 468sselid 4006 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴))
470 limcresi 25940 . . . . . . . . . . . 12 (𝐺 lim 𝐴) ⊆ ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴)
47110, 114feqresmpt 6991 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)))
472471oveq1d 7463 . . . . . . . . . . . 12 (𝜑 → ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
473470, 472sseqtrid 4061 . . . . . . . . . . 11 (𝜑 → (𝐺 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
474 lhop1.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
475473, 474sseldd 4009 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
476 opelxpi 5737 . . . . . . . . . . . 12 (((𝐺𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
47712, 451, 476sylancl 585 . . . . . . . . . . 11 (𝜑 → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
478454cncnpi 23307 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
479450, 477, 478sylancr 586 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
480130, 134, 416, 416, 46, 432, 469, 475, 479limccnp2 25947 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
481459, 480eqeltrrd 2845 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
482 eqid 2740 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))
48346, 482divcn 24911 . . . . . . . . 9 / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))
484 eldifsn 4811 . . . . . . . . . . 11 ((𝐺𝑋) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑋) ≠ 0))
48512, 20, 484sylanbrc 582 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ (ℂ ∖ {0}))
4869, 485opelxpd 5739 . . . . . . . . 9 (𝜑 → ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0})))
487 resttopon 23190 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
488419, 417, 487mp2an 691 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
489 txtopon 23620 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))) → ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0}))))
490419, 488, 489mp2an 691 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0})))
491490toponunii 22943 . . . . . . . . . 10 (ℂ × (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
492491cncnpi 23307 . . . . . . . . 9 (( / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0}))) → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
493483, 486, 492sylancr 586 . . . . . . . 8 (𝜑 → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
494412, 415, 416, 418, 46, 428, 458, 481, 493limccnp2 25947 . . . . . . 7 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴))
495412, 413, 220divcld 12070 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ ℂ)
496495fmpttd 7149 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))):(𝐴(,)𝑋)⟶ℂ)
497434, 153sstri 4018 . . . . . . . . 9 (𝐴(,)𝑋) ⊆ ℂ
498497a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ ℂ)
499496, 498, 66, 46ellimc2 25932 . . . . . . 7 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))))
500494, 499mpbid 232 . . . . . 6 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢))))
501500simprd 495 . . . . 5 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))
502 notrab 4341 . . . . . 6 (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}
50368cnmetdval 24812 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝐶𝑥)))
504 abssub 15375 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐶𝑥)) = (abs‘(𝑥𝐶)))
505503, 504eqtrd 2780 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
50624, 505sylan 579 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
507506breq1d 5176 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝐶(abs ∘ − )𝑥) ≤ 𝐸 ↔ (abs‘(𝑥𝐶)) ≤ 𝐸))
508507rabbidva 3450 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸})
50932a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51028rexrd 11340 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
511 eqid 2740 . . . . . . . . . 10 {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸}
51247, 511blcld 24539 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℝ*) → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
513509, 24, 510, 512syl3anc 1371 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
514508, 513eqeltrrd 2845 . . . . . . 7 (𝜑 → {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
515424cldopn 23060 . . . . . . 7 ({𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
516514, 515syl 17 . . . . . 6 (𝜑 → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
517502, 516eqeltrrid 2849 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (TopOpen‘ℂfld))
518407, 501, 517rspcdva 3636 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
519402, 518sylbird 260 . . 3 (𝜑 → (¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
520397, 519mt3d 148 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸)
52128recnd 11318 . . . 4 (𝜑𝐸 ∈ ℂ)
522521mullidd 11308 . . 3 (𝜑 → (1 · 𝐸) = 𝐸)
523 1red 11291 . . . 4 (𝜑 → 1 ∈ ℝ)
524 1lt2 12464 . . . . 5 1 < 2
525524a1i 11 . . . 4 (𝜑 → 1 < 2)
526523, 30, 27, 525ltmul1dd 13154 . . 3 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
527522, 526eqbrtrrd 5190 . 2 (𝜑𝐸 < (2 · 𝐸))
52826, 28, 31, 520, 527lelttrd 11448 1 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  +crp 13057  (,)cioo 13407  [,]cicc 13410  abscabs 15283  t crest 17480  TopOpenctopn 17481  topGenctg 17497  ∞Metcxmet 21372  ballcbl 21374  fldccnfld 21387  TopOnctopon 22937  Clsdccld 23045  intcnt 23046   Cn ccn 23253   CnP ccnp 23254   ×t ctx 23589  cnccncf 24921   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  lhop1  26073
  Copyright terms: Public domain W3C validator