MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1lem Structured version   Visualization version   GIF version

Theorem lhop1lem 25918
Description: Lemma for lhop1 25919. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
lhop1lem.e (𝜑𝐸 ∈ ℝ+)
lhop1lem.d (𝜑𝐷 ∈ ℝ)
lhop1lem.db (𝜑𝐷𝐵)
lhop1lem.x (𝜑𝑋 ∈ (𝐴(,)𝐷))
lhop1lem.t (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
lhop1lem.r 𝑅 = (𝐴 + (𝑟 / 2))
Assertion
Ref Expression
lhop1lem (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Distinct variable groups:   𝑧,𝑟,𝐵   𝑡,𝐷   𝜑,𝑟,𝑧   𝑧,𝑅   𝑡,𝑟,𝐴,𝑧   𝐸,𝑟,𝑡   𝑋,𝑟,𝑧   𝐶,𝑟,𝑡,𝑧   𝐹,𝑟,𝑡,𝑧   𝐺,𝑟,𝑡,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡)   𝐷(𝑧,𝑟)   𝑅(𝑡,𝑟)   𝐸(𝑧)   𝑋(𝑡)

Proof of Theorem lhop1lem
Dummy variables 𝑣 𝑥 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 lhop1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
3 lhop1lem.db . . . . . . . . 9 (𝜑𝐷𝐵)
4 iooss2 13342 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐷𝐵) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
52, 3, 4syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
6 lhop1lem.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴(,)𝐷))
75, 6sseldd 3947 . . . . . . 7 (𝜑𝑋 ∈ (𝐴(,)𝐵))
81, 7ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ ℝ)
98recnd 11202 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ℂ)
10 lhop1.g . . . . . . 7 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
1110, 7ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ ℝ)
1211recnd 11202 . . . . 5 (𝜑 → (𝐺𝑋) ∈ ℂ)
13 lhop1.gn0 . . . . . 6 (𝜑 → ¬ 0 ∈ ran 𝐺)
1410ffnd 6689 . . . . . . . . 9 (𝜑𝐺 Fn (𝐴(,)𝐵))
15 fnfvelrn 7052 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐺𝑋) ∈ ran 𝐺)
1614, 7, 15syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ran 𝐺)
17 eleq1 2816 . . . . . . . 8 ((𝐺𝑋) = 0 → ((𝐺𝑋) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
1816, 17syl5ibcom 245 . . . . . . 7 (𝜑 → ((𝐺𝑋) = 0 → 0 ∈ ran 𝐺))
1918necon3bd 2939 . . . . . 6 (𝜑 → (¬ 0 ∈ ran 𝐺 → (𝐺𝑋) ≠ 0))
2013, 19mpd 15 . . . . 5 (𝜑 → (𝐺𝑋) ≠ 0)
219, 12, 20divcld 11958 . . . 4 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ)
22 limccl 25776 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ⊆ ℂ
23 lhop1.c . . . . 5 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2422, 23sselid 3944 . . . 4 (𝜑𝐶 ∈ ℂ)
2521, 24subcld 11533 . . 3 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) − 𝐶) ∈ ℂ)
2625abscld 15405 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ∈ ℝ)
27 lhop1lem.e . . 3 (𝜑𝐸 ∈ ℝ+)
2827rpred 12995 . 2 (𝜑𝐸 ∈ ℝ)
29 2re 12260 . . . 4 2 ∈ ℝ
3029a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
3130, 28remulcld 11204 . 2 (𝜑 → (2 · 𝐸) ∈ ℝ)
32 cnxmet 24660 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
3332a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
34 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝑣 ∈ (TopOpen‘ℂfld))
35 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝐴𝑣)
36 eliooord 13366 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐷) → (𝐴 < 𝑋𝑋 < 𝐷))
376, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝑋𝑋 < 𝐷))
3837simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑋)
39 lhop1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
40 ioossre 13368 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐷) ⊆ ℝ
4140, 6sselid 3944 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
42 difrp 12991 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4339, 41, 42syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4438, 43mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐴) ∈ ℝ+)
4544adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (𝑋𝐴) ∈ ℝ+)
46 eqid 2729 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746cnfldtopn 24669 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
4847mopni3 24382 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣) ∧ (𝑋𝐴) ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
4933, 34, 35, 45, 48syl31anc 1375 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
50 ssrin 4205 . . . . . . . . . . . . . . . 16 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ (𝐴(,)𝑋)))
51 lbioo 13337 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐴 ∈ (𝐴(,)𝑋)
52 disjsn 4675 . . . . . . . . . . . . . . . . . . 19 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝑋))
5351, 52mpbir 231 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝑋) ∩ {𝐴}) = ∅
54 disj3 4417 . . . . . . . . . . . . . . . . . 18 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴}))
5553, 54mpbi 230 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴})
5655ineq2i 4180 . . . . . . . . . . . . . . . 16 (𝑣 ∩ (𝐴(,)𝑋)) = (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))
5750, 56sseqtrdi 3987 . . . . . . . . . . . . . . 15 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))
58 lhop1lem.r . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 = (𝐴 + (𝑟 / 2))
5939adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ)
60 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ+)
6160rpred 12995 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ)
6261rehalfcld 12429 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
6359, 62readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) ∈ ℝ)
6458, 63eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ)
6564recnd 11202 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℂ)
6639recnd 11202 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ ℂ)
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℂ)
68 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
6968cnmetdval 24658 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7065, 67, 69syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7158oveq1i 7397 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅𝐴) = ((𝐴 + (𝑟 / 2)) − 𝐴)
7261recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℂ)
7372halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℂ)
7467, 73pncan2d 11535 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) − 𝐴) = (𝑟 / 2))
7571, 74eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅𝐴) = (𝑟 / 2))
7675fveq2d 6862 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑅𝐴)) = (abs‘(𝑟 / 2)))
7760rphalfcld 13007 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ+)
7877rpred 12995 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
7977rpge0d 12999 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 0 ≤ (𝑟 / 2))
8078, 79absidd 15389 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
8170, 76, 803eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (𝑟 / 2))
82 rphalflt 12982 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
8360, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < 𝑟)
8481, 83eqbrtrd 5129 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) < 𝑟)
8532a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8661rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ*)
87 elbl3 24280 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8885, 86, 67, 65, 87syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8984, 88mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟))
9059, 77ltaddrpd 13028 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < (𝐴 + (𝑟 / 2)))
9190, 58breqtrrdi 5149 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < 𝑅)
9241adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ)
9392, 59resubcld 11606 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑋𝐴) ∈ ℝ)
94 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 < (𝑋𝐴))
9578, 61, 93, 83, 94lttrd 11335 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < (𝑋𝐴))
9659, 78, 92ltaddsub2d 11779 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) < 𝑋 ↔ (𝑟 / 2) < (𝑋𝐴)))
9795, 96mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) < 𝑋)
9858, 97eqbrtrid 5142 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 < 𝑋)
9959rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ*)
10041rexrd 11224 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ℝ*)
101100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ*)
102 elioo2 13347 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝑋 ∈ ℝ*) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10399, 101, 102syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10464, 91, 98, 103mpbir3and 1343 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝑋))
10589, 104elind 4163 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)))
1069adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑋) ∈ ℂ)
1071adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108 lhop1lem.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐷 ∈ ℝ)
109108rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐷 ∈ ℝ*)
11037simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑋 < 𝐷)
11141, 108, 110ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑋𝐷)
112100, 109, 2, 111, 3xrletrd 13122 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋𝐵)
113 iooss2 13342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
1142, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
115114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
116115, 104sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝐵))
117107, 116ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℝ)
118117recnd 11202 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℂ)
119106, 118subcld 11533 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
12012adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑋) ∈ ℂ)
12110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
122121, 116ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℝ)
123122recnd 11202 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℂ)
124120, 123subcld 11533 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
125 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑅 → (𝐺𝑧) = (𝐺𝑅))
126125oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑅 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑅)))
127126neeq1d 2984 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑅 → (((𝐺𝑋) − (𝐺𝑧)) ≠ 0 ↔ ((𝐺𝑋) − (𝐺𝑅)) ≠ 0))
128 lhop1.gd0 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
129128adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
13012adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑋) ∈ ℂ)
131114sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝐴(,)𝐵))
13210ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
133131, 132syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℝ)
134133recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℂ)
135130, 134subeq0ad 11543 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 ↔ (𝐺𝑋) = (𝐺𝑧)))
136 ioossre 13368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴(,)𝐵) ⊆ ℝ
137136, 131sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ)
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 ∈ ℝ)
13941ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑋 ∈ ℝ)
140 eliooord 13366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝐴(,)𝑋) → (𝐴 < 𝑧𝑧 < 𝑋))
141140adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐴 < 𝑧𝑧 < 𝑋))
142141simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 < 𝑋)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 < 𝑋)
14439rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐴 ∈ ℝ*)
145144adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 ∈ ℝ*)
1462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐵 ∈ ℝ*)
147141simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 < 𝑧)
148100, 109, 2, 110, 3xrltletrd 13121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑋 < 𝐵)
149148adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 < 𝐵)
150 iccssioo 13376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝑧𝑋 < 𝐵)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
151145, 146, 147, 149, 150syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
152151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
153 ax-resscn 11125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ℝ ⊆ ℂ
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ℝ ⊆ ℂ)
155 fss 6704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
15610, 153, 155sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
157136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
158 lhop1.ig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
159 dvcn 25823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
160154, 156, 157, 158, 159syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
161 cncfcdm 24791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((ℝ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
162153, 160, 161sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
16310, 162mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
164163ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
165 rescncf 24790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ)))
166152, 164, 165sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ))
167153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ℝ ⊆ ℂ)
168156ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
169136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐴(,)𝐵) ⊆ ℝ)
170152, 136sstrdi 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ ℝ)
171 tgioo4 24693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
17246, 171dvres 25812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑧[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
173167, 168, 169, 170, 172syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
174 iccntr 24710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
175138, 139, 174syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
176175reseq2d 5950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
177173, 176eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
178177dmeqd 5869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
179 ioossicc 13394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧(,)𝑋) ⊆ (𝑧[,]𝑋)
180179, 152sstrid 3958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ (𝐴(,)𝐵))
181158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
182180, 181sseqtrrd 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺))
183 ssdmres 5984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
184182, 183sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
185178, 184eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = (𝑧(,)𝑋))
186137rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ*)
187100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ*)
18841adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ)
189137, 188, 142ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧𝑋)
190 ubicc2 13426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑋 ∈ (𝑧[,]𝑋))
191186, 187, 189, 190syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ (𝑧[,]𝑋))
192191fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = (𝐺𝑋))
193 lbicc2 13425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑧 ∈ (𝑧[,]𝑋))
194186, 187, 189, 193syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝑧[,]𝑋))
195194fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = (𝐺𝑧))
196192, 195eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) ↔ (𝐺𝑋) = (𝐺𝑧)))
197196biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧))
198197eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋))
199138, 139, 143, 166, 185, 198rolle 25894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0)
200177fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤))
201 fvres 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝑧(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
202200, 201sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
203 dvf 25808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
204158feq2d 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
205203, 204mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
206205ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
207206ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
208207adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
209180sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
210 fnfvelrn 7052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
211208, 209, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
212202, 211eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺))
213 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
214212, 213syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
215214rexlimdva 3134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
216199, 215mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 0 ∈ ran (ℝ D 𝐺))
217216ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) = (𝐺𝑧) → 0 ∈ ran (ℝ D 𝐺)))
218135, 217sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 → 0 ∈ ran (ℝ D 𝐺)))
219218necon3bd 2939 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
220129, 219mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
221220ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
222221adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
223127, 222, 104rspcdva 3589 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
224119, 124, 223divcld 11958 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) ∈ ℂ)
22524adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐶 ∈ ℂ)
226224, 225subcld 11533 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶) ∈ ℂ)
227226abscld 15405 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ∈ ℝ)
22828adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐸 ∈ ℝ)
229109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐷 ∈ ℝ*)
230110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 < 𝐷)
231 iccssioo 13376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝑅𝑋 < 𝐷)) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
23299, 229, 91, 230, 231syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
2335adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
234232, 233sstrd 3957 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐵))
235 fss 6704 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
2361, 153, 235sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
237 lhop1.if . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
238 dvcn 25823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
239154, 236, 157, 237, 238syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
240 cncfcdm 24791 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
241153, 239, 240sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2421, 241mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
243242adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
244 rescncf 24790 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
245234, 243, 244sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
246163adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
247 rescncf 24790 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
248234, 246, 247sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
249153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ℝ ⊆ ℂ)
250236adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
251136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐵) ⊆ ℝ)
252 iccssre 13390 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑅[,]𝑋) ⊆ ℝ)
25364, 92, 252syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ ℝ)
25446, 171dvres 25812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
255249, 250, 251, 253, 254syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
256 iccntr 24710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
25764, 92, 256syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
258257reseq2d 5950 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
259255, 258eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
260259dmeqd 5869 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
26159, 64, 91ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴𝑅)
262 iooss1 13341 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℝ*𝐴𝑅) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
26399, 261, 262syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
264111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋𝐷)
265 iooss2 13342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐷 ∈ ℝ*𝑋𝐷) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
266229, 264, 265syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
267263, 266sstrd 3957 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐷))
268267, 233sstrd 3957 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐵))
269237adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
270268, 269sseqtrrd 3984 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹))
271 ssdmres 5984 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
272270, 271sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
273260, 272eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
274156adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
27546, 171dvres 25812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
276249, 274, 251, 253, 275syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
277257reseq2d 5950 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
278276, 277eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
279278dmeqd 5869 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
280158adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
281268, 280sseqtrrd 3984 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺))
282 ssdmres 5984 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
283281, 282sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
284279, 283eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
28564, 92, 98, 245, 248, 273, 284cmvth 25895 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)))
28664rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ*)
287286adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ ℝ*)
288100ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ ℝ*)
28964, 92, 98ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅𝑋)
290289adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅𝑋)
291 ubicc2 13426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑋 ∈ (𝑅[,]𝑋))
292287, 288, 290, 291syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ (𝑅[,]𝑋))
293292fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐹𝑋))
294 lbicc2 13425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑅 ∈ (𝑅[,]𝑋))
295287, 288, 290, 294syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ (𝑅[,]𝑋))
296295fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐹𝑅))
297293, 296oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐹𝑋) − (𝐹𝑅)))
298278fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤))
299 fvres 6877 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
300298, 299sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
301297, 300oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)))
302292fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐺𝑋))
303295fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐺𝑅))
304302, 303oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐺𝑋) − (𝐺𝑅)))
305259fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤))
306 fvres 6877 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
307305, 306sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
308304, 307oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)))
309124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
310 dvf 25808 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
311237feq2d 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
312310, 311mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
313312ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
314268sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
315313, 314ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
316309, 315mulcomd 11195 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
317308, 316eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
318301, 317eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
319119adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
320205ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
321320, 314ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ℂ)
322223adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
323128ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
324320ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
325324, 314, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
326 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ D 𝐺)‘𝑤) = 0 → (((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
327325, 326syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((ℝ D 𝐺)‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
328327necon3bd 2939 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑤) ≠ 0))
329323, 328mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ≠ 0)
330319, 309, 315, 321, 322, 329divmuleqd 12004 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
331318, 330bitr4d 282 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
332331rexbidva 3155 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
333285, 332mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
334 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐹)‘𝑡) = ((ℝ D 𝐹)‘𝑤))
335 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐺)‘𝑡) = ((ℝ D 𝐺)‘𝑤))
336334, 335oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → (((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
337336fvoveq1d 7409 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑤 → (abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
338337breq1d 5117 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑤 → ((abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
339 lhop1lem.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
340339ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
341267sselda 3946 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐷))
342338, 340, 341rspcdva 3589 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸)
343 fvoveq1 7410 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
344343breq1d 5117 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → ((abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
345342, 344syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
346345rexlimdva 3134 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
347333, 346mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸)
348227, 228, 347ltled 11322 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸)
349 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐹𝑢) = (𝐹𝑅))
350349oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐹𝑋) − (𝐹𝑢)) = ((𝐹𝑋) − (𝐹𝑅)))
351 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐺𝑢) = (𝐺𝑅))
352351oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐺𝑋) − (𝐺𝑢)) = ((𝐺𝑋) − (𝐺𝑅)))
353350, 352oveq12d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑅 → (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) = (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))))
354353fvoveq1d 7409 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑅 → (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)))
355354breq1d 5117 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑅 → ((abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸))
356355rspcev 3588 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ∧ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
357105, 348, 356syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
358357adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
359 ssrexv 4016 . . . . . . . . . . . . . . 15 (((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → (∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36057, 358, 359syl2imc 41 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
361360anassrs 467 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < (𝑋𝐴)) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
362361expimpd 453 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
363362rexlimdva 3134 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36449, 363mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
365 inss2 4201 . . . . . . . . . . . . . 14 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ ((𝐴(,)𝑋) ∖ {𝐴})
366 difss 4099 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ∖ {𝐴}) ⊆ (𝐴(,)𝑋)
367365, 366sstri 3956 . . . . . . . . . . . . 13 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)
368367sseli 3942 . . . . . . . . . . . 12 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → 𝑢 ∈ (𝐴(,)𝑋))
369 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
370369oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐹𝑋) − (𝐹𝑧)) = ((𝐹𝑋) − (𝐹𝑢)))
371 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐺𝑧) = (𝐺𝑢))
372371oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑢)))
373370, 372oveq12d 7405 . . . . . . . . . . . . . . 15 (𝑧 = 𝑢 → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
374 eqid 2729 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))
375 ovex 7420 . . . . . . . . . . . . . . 15 (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) ∈ V
376373, 374, 375fvmpt 6968 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴(,)𝑋) → ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
377376fvoveq1d 7409 . . . . . . . . . . . . 13 (𝑢 ∈ (𝐴(,)𝑋) → (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)))
378377breq1d 5117 . . . . . . . . . . . 12 (𝑢 ∈ (𝐴(,)𝑋) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
379368, 378syl 17 . . . . . . . . . . 11 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
380379rexbiia 3074 . . . . . . . . . 10 (∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
381364, 380sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
382 ovex 7420 . . . . . . . . . . 11 (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ V
383382, 374fnmpti 6661 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋)
384 fvoveq1 7410 . . . . . . . . . . . 12 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → (abs‘(𝑥𝐶)) = (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)))
385384breq1d 5117 . . . . . . . . . . 11 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
386385rexima 7212 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋) ∧ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)) → (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
387383, 367, 386mp2an 692 . . . . . . . . 9 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
388381, 387sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸)
389 dfrex2 3056 . . . . . . . 8 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
390388, 389sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
391 ssrab 4036 . . . . . . . 8 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ ℂ ∧ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸))
392391simprbi 496 . . . . . . 7 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
393390, 392nsyl 140 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})
394393expr 456 . . . . 5 ((𝜑𝑣 ∈ (TopOpen‘ℂfld)) → (𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
395394ralrimiva 3125 . . . 4 (𝜑 → ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
396 ralinexa 3083 . . . 4 (∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}) ↔ ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
397395, 396sylib 218 . . 3 (𝜑 → ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
398 fvoveq1 7410 . . . . . . . 8 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (abs‘(𝑥𝐶)) = (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)))
399398breq1d 5117 . . . . . . 7 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
400399notbid 318 . . . . . 6 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (¬ (abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
401400elrab3 3660 . . . . 5 (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
40221, 401syl 17 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
403 eleq2 2817 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 ↔ ((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
404 sseq2 3973 . . . . . . . 8 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
405404anbi2d 630 . . . . . . 7 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ (𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
406405rexbidv 3157 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
407403, 406imbi12d 344 . . . . 5 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))))
4089adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑋) ∈ ℂ)
4091ffvelcdmda 7056 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
410131, 409syldan 591 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℝ)
411410recnd 11202 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℂ)
412408, 411subcld 11533 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑧)) ∈ ℂ)
413130, 134subcld 11533 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ)
414 eldifsn 4750 . . . . . . . . 9 (((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}) ↔ (((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ ∧ ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
415413, 220, 414sylanbrc 583 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}))
416 ssidd 3970 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
417 difss 4099 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
418417a1i 11 . . . . . . . 8 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
41946cnfldtopon 24670 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
420 cnex 11149 . . . . . . . . . 10 ℂ ∈ V
421420difexi 5285 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
422 txrest 23518 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) ∧ (ℂ ∈ V ∧ (ℂ ∖ {0}) ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))))
423419, 419, 420, 421, 422mp4an 693 . . . . . . . . 9 (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
424 unicntop 24673 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
425424restid 17396 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
426419, 425ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
427426oveq1i 7397 . . . . . . . . 9 (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
428423, 427eqtr2i 2753 . . . . . . . 8 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0})))
4299subid1d 11522 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) = (𝐹𝑋))
430 txtopon 23478 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
431419, 419, 430mp2an 692 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
432431toponrestid 22808 . . . . . . . . . 10 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
433 limcresi 25786 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
434 ioossre 13368 . . . . . . . . . . . . . 14 (𝐴(,)𝑋) ⊆ ℝ
435 resmpt 6008 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)))
436434, 435ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋))
437436oveq1i 7397 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
438433, 437sseqtri 3995 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
439 cncfmptc 24805 . . . . . . . . . . . . 13 (((𝐹𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
4408, 154, 154, 439syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
441 eqidd 2730 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐹𝑋) = (𝐹𝑋))
442440, 39, 441cnmptlimc 25791 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴))
443438, 442sselid 3944 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴))
444 limcresi 25786 . . . . . . . . . . . 12 (𝐹 lim 𝐴) ⊆ ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴)
4451, 114feqresmpt 6930 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)))
446445oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
447444, 446sseqtrid 3989 . . . . . . . . . . 11 (𝜑 → (𝐹 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
448 lhop1.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
449447, 448sseldd 3947 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
45046subcn 24755 . . . . . . . . . . 11 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
451 0cn 11166 . . . . . . . . . . . 12 0 ∈ ℂ
452 opelxpi 5675 . . . . . . . . . . . 12 (((𝐹𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
4539, 451, 452sylancl 586 . . . . . . . . . . 11 (𝜑 → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
454431toponunii 22803 . . . . . . . . . . . 12 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
455454cncnpi 23165 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
456450, 453, 455sylancr 587 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
457408, 411, 416, 416, 46, 432, 443, 449, 456limccnp2 25793 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
458429, 457eqeltrrd 2829 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
45912subid1d 11522 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) = (𝐺𝑋))
460 limcresi 25786 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
461 resmpt 6008 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)))
462434, 461ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋))
463462oveq1i 7397 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
464460, 463sseqtri 3995 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
465 cncfmptc 24805 . . . . . . . . . . . . 13 (((𝐺𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
46611, 154, 154, 465syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
467 eqidd 2730 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐺𝑋) = (𝐺𝑋))
468466, 39, 467cnmptlimc 25791 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴))
469464, 468sselid 3944 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴))
470 limcresi 25786 . . . . . . . . . . . 12 (𝐺 lim 𝐴) ⊆ ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴)
47110, 114feqresmpt 6930 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)))
472471oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
473470, 472sseqtrid 3989 . . . . . . . . . . 11 (𝜑 → (𝐺 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
474 lhop1.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
475473, 474sseldd 3947 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
476 opelxpi 5675 . . . . . . . . . . . 12 (((𝐺𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
47712, 451, 476sylancl 586 . . . . . . . . . . 11 (𝜑 → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
478454cncnpi 23165 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
479450, 477, 478sylancr 587 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
480130, 134, 416, 416, 46, 432, 469, 475, 479limccnp2 25793 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
481459, 480eqeltrrd 2829 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
482 eqid 2729 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))
48346, 482divcn 24759 . . . . . . . . 9 / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))
484 eldifsn 4750 . . . . . . . . . . 11 ((𝐺𝑋) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑋) ≠ 0))
48512, 20, 484sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ (ℂ ∖ {0}))
4869, 485opelxpd 5677 . . . . . . . . 9 (𝜑 → ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0})))
487 resttopon 23048 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
488419, 417, 487mp2an 692 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
489 txtopon 23478 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))) → ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0}))))
490419, 488, 489mp2an 692 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0})))
491490toponunii 22803 . . . . . . . . . 10 (ℂ × (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
492491cncnpi 23165 . . . . . . . . 9 (( / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0}))) → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
493483, 486, 492sylancr 587 . . . . . . . 8 (𝜑 → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
494412, 415, 416, 418, 46, 428, 458, 481, 493limccnp2 25793 . . . . . . 7 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴))
495412, 413, 220divcld 11958 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ ℂ)
496495fmpttd 7087 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))):(𝐴(,)𝑋)⟶ℂ)
497434, 153sstri 3956 . . . . . . . . 9 (𝐴(,)𝑋) ⊆ ℂ
498497a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ ℂ)
499496, 498, 66, 46ellimc2 25778 . . . . . . 7 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))))
500494, 499mpbid 232 . . . . . 6 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢))))
501500simprd 495 . . . . 5 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))
502 notrab 4285 . . . . . 6 (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}
50368cnmetdval 24658 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝐶𝑥)))
504 abssub 15293 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐶𝑥)) = (abs‘(𝑥𝐶)))
505503, 504eqtrd 2764 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
50624, 505sylan 580 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
507506breq1d 5117 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝐶(abs ∘ − )𝑥) ≤ 𝐸 ↔ (abs‘(𝑥𝐶)) ≤ 𝐸))
508507rabbidva 3412 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸})
50932a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51028rexrd 11224 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
511 eqid 2729 . . . . . . . . . 10 {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸}
51247, 511blcld 24393 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℝ*) → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
513509, 24, 510, 512syl3anc 1373 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
514508, 513eqeltrrd 2829 . . . . . . 7 (𝜑 → {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
515424cldopn 22918 . . . . . . 7 ({𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
516514, 515syl 17 . . . . . 6 (𝜑 → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
517502, 516eqeltrrid 2833 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (TopOpen‘ℂfld))
518407, 501, 517rspcdva 3589 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
519402, 518sylbird 260 . . 3 (𝜑 → (¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
520397, 519mt3d 148 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸)
52128recnd 11202 . . . 4 (𝜑𝐸 ∈ ℂ)
522521mullidd 11192 . . 3 (𝜑 → (1 · 𝐸) = 𝐸)
523 1red 11175 . . . 4 (𝜑 → 1 ∈ ℝ)
524 1lt2 12352 . . . . 5 1 < 2
525524a1i 11 . . . 4 (𝜑 → 1 < 2)
526523, 30, 27, 525ltmul1dd 13050 . . 3 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
527522, 526eqbrtrrd 5131 . 2 (𝜑𝐸 < (2 · 𝐸))
52826, 28, 31, 520, 527lelttrd 11332 1 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  [,]cicc 13309  abscabs 15200  t crest 17383  TopOpenctopn 17384  topGenctg 17400  ∞Metcxmet 21249  ballcbl 21251  fldccnfld 21264  TopOnctopon 22797  Clsdccld 22903  intcnt 22904   Cn ccn 23111   CnP ccnp 23112   ×t ctx 23447  cnccncf 24769   lim climc 25763   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  lhop1  25919
  Copyright terms: Public domain W3C validator