MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1lem Structured version   Visualization version   GIF version

Theorem lhop1lem 25177
Description: Lemma for lhop1 25178. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
lhop1lem.e (𝜑𝐸 ∈ ℝ+)
lhop1lem.d (𝜑𝐷 ∈ ℝ)
lhop1lem.db (𝜑𝐷𝐵)
lhop1lem.x (𝜑𝑋 ∈ (𝐴(,)𝐷))
lhop1lem.t (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
lhop1lem.r 𝑅 = (𝐴 + (𝑟 / 2))
Assertion
Ref Expression
lhop1lem (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Distinct variable groups:   𝑧,𝑟,𝐵   𝑡,𝐷   𝜑,𝑟,𝑧   𝑧,𝑅   𝑡,𝑟,𝐴,𝑧   𝐸,𝑟,𝑡   𝑋,𝑟,𝑧   𝐶,𝑟,𝑡,𝑧   𝐹,𝑟,𝑡,𝑧   𝐺,𝑟,𝑡,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡)   𝐷(𝑧,𝑟)   𝑅(𝑡,𝑟)   𝐸(𝑧)   𝑋(𝑡)

Proof of Theorem lhop1lem
Dummy variables 𝑣 𝑥 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 lhop1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
3 lhop1lem.db . . . . . . . . 9 (𝜑𝐷𝐵)
4 iooss2 13115 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐷𝐵) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
52, 3, 4syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
6 lhop1lem.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴(,)𝐷))
75, 6sseldd 3922 . . . . . . 7 (𝜑𝑋 ∈ (𝐴(,)𝐵))
81, 7ffvelrnd 6962 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ ℝ)
98recnd 11003 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ℂ)
10 lhop1.g . . . . . . 7 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
1110, 7ffvelrnd 6962 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ ℝ)
1211recnd 11003 . . . . 5 (𝜑 → (𝐺𝑋) ∈ ℂ)
13 lhop1.gn0 . . . . . 6 (𝜑 → ¬ 0 ∈ ran 𝐺)
1410ffnd 6601 . . . . . . . . 9 (𝜑𝐺 Fn (𝐴(,)𝐵))
15 fnfvelrn 6958 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐺𝑋) ∈ ran 𝐺)
1614, 7, 15syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ran 𝐺)
17 eleq1 2826 . . . . . . . 8 ((𝐺𝑋) = 0 → ((𝐺𝑋) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
1816, 17syl5ibcom 244 . . . . . . 7 (𝜑 → ((𝐺𝑋) = 0 → 0 ∈ ran 𝐺))
1918necon3bd 2957 . . . . . 6 (𝜑 → (¬ 0 ∈ ran 𝐺 → (𝐺𝑋) ≠ 0))
2013, 19mpd 15 . . . . 5 (𝜑 → (𝐺𝑋) ≠ 0)
219, 12, 20divcld 11751 . . . 4 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ)
22 limccl 25039 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ⊆ ℂ
23 lhop1.c . . . . 5 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2422, 23sselid 3919 . . . 4 (𝜑𝐶 ∈ ℂ)
2521, 24subcld 11332 . . 3 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) − 𝐶) ∈ ℂ)
2625abscld 15148 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ∈ ℝ)
27 lhop1lem.e . . 3 (𝜑𝐸 ∈ ℝ+)
2827rpred 12772 . 2 (𝜑𝐸 ∈ ℝ)
29 2re 12047 . . . 4 2 ∈ ℝ
3029a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
3130, 28remulcld 11005 . 2 (𝜑 → (2 · 𝐸) ∈ ℝ)
32 cnxmet 23936 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
3332a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
34 simprl 768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝑣 ∈ (TopOpen‘ℂfld))
35 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝐴𝑣)
36 eliooord 13138 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐷) → (𝐴 < 𝑋𝑋 < 𝐷))
376, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝑋𝑋 < 𝐷))
3837simpld 495 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑋)
39 lhop1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
40 ioossre 13140 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐷) ⊆ ℝ
4140, 6sselid 3919 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
42 difrp 12768 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4339, 41, 42syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4438, 43mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐴) ∈ ℝ+)
4544adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (𝑋𝐴) ∈ ℝ+)
46 eqid 2738 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746cnfldtopn 23945 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
4847mopni3 23650 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣) ∧ (𝑋𝐴) ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
4933, 34, 35, 45, 48syl31anc 1372 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
50 ssrin 4167 . . . . . . . . . . . . . . . 16 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ (𝐴(,)𝑋)))
51 lbioo 13110 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐴 ∈ (𝐴(,)𝑋)
52 disjsn 4647 . . . . . . . . . . . . . . . . . . 19 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝑋))
5351, 52mpbir 230 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝑋) ∩ {𝐴}) = ∅
54 disj3 4387 . . . . . . . . . . . . . . . . . 18 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴}))
5553, 54mpbi 229 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴})
5655ineq2i 4143 . . . . . . . . . . . . . . . 16 (𝑣 ∩ (𝐴(,)𝑋)) = (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))
5750, 56sseqtrdi 3971 . . . . . . . . . . . . . . 15 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))
58 lhop1lem.r . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 = (𝐴 + (𝑟 / 2))
5939adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ)
60 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ+)
6160rpred 12772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ)
6261rehalfcld 12220 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
6359, 62readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) ∈ ℝ)
6458, 63eqeltrid 2843 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ)
6564recnd 11003 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℂ)
6639recnd 11003 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ ℂ)
6766adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℂ)
68 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
6968cnmetdval 23934 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7065, 67, 69syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7158oveq1i 7285 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅𝐴) = ((𝐴 + (𝑟 / 2)) − 𝐴)
7261recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℂ)
7372halfcld 12218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℂ)
7467, 73pncan2d 11334 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) − 𝐴) = (𝑟 / 2))
7571, 74eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅𝐴) = (𝑟 / 2))
7675fveq2d 6778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑅𝐴)) = (abs‘(𝑟 / 2)))
7760rphalfcld 12784 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ+)
7877rpred 12772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
7977rpge0d 12776 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 0 ≤ (𝑟 / 2))
8078, 79absidd 15134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
8170, 76, 803eqtrd 2782 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (𝑟 / 2))
82 rphalflt 12759 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
8360, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < 𝑟)
8481, 83eqbrtrd 5096 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) < 𝑟)
8532a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8661rexrd 11025 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ*)
87 elbl3 23545 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8885, 86, 67, 65, 87syl22anc 836 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8984, 88mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟))
9059, 77ltaddrpd 12805 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < (𝐴 + (𝑟 / 2)))
9190, 58breqtrrdi 5116 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < 𝑅)
9241adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ)
9392, 59resubcld 11403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑋𝐴) ∈ ℝ)
94 simprr 770 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 < (𝑋𝐴))
9578, 61, 93, 83, 94lttrd 11136 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < (𝑋𝐴))
9659, 78, 92ltaddsub2d 11576 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) < 𝑋 ↔ (𝑟 / 2) < (𝑋𝐴)))
9795, 96mpbird 256 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) < 𝑋)
9858, 97eqbrtrid 5109 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 < 𝑋)
9959rexrd 11025 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ*)
10041rexrd 11025 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ℝ*)
101100adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ*)
102 elioo2 13120 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝑋 ∈ ℝ*) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10399, 101, 102syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10464, 91, 98, 103mpbir3and 1341 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝑋))
10589, 104elind 4128 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)))
1069adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑋) ∈ ℂ)
1071adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108 lhop1lem.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐷 ∈ ℝ)
109108rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐷 ∈ ℝ*)
11037simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑋 < 𝐷)
11141, 108, 110ltled 11123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑋𝐷)
112100, 109, 2, 111, 3xrletrd 12896 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋𝐵)
113 iooss2 13115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
1142, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
115114adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
116115, 104sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝐵))
117107, 116ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℝ)
118117recnd 11003 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℂ)
119106, 118subcld 11332 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
12012adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑋) ∈ ℂ)
12110adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
122121, 116ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℝ)
123122recnd 11003 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℂ)
124120, 123subcld 11332 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
125 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑅 → (𝐺𝑧) = (𝐺𝑅))
126125oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑅 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑅)))
127126neeq1d 3003 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑅 → (((𝐺𝑋) − (𝐺𝑧)) ≠ 0 ↔ ((𝐺𝑋) − (𝐺𝑅)) ≠ 0))
128 lhop1.gd0 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
129128adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
13012adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑋) ∈ ℂ)
131114sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝐴(,)𝐵))
13210ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
133131, 132syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℝ)
134133recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℂ)
135130, 134subeq0ad 11342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 ↔ (𝐺𝑋) = (𝐺𝑧)))
136 ioossre 13140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴(,)𝐵) ⊆ ℝ
137136, 131sselid 3919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ)
138137adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 ∈ ℝ)
13941ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑋 ∈ ℝ)
140 eliooord 13138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝐴(,)𝑋) → (𝐴 < 𝑧𝑧 < 𝑋))
141140adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐴 < 𝑧𝑧 < 𝑋))
142141simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 < 𝑋)
143142adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 < 𝑋)
14439rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐴 ∈ ℝ*)
145144adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 ∈ ℝ*)
1462adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐵 ∈ ℝ*)
147141simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 < 𝑧)
148100, 109, 2, 110, 3xrltletrd 12895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑋 < 𝐵)
149148adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 < 𝐵)
150 iccssioo 13148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝑧𝑋 < 𝐵)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
151145, 146, 147, 149, 150syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
152151adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
153 ax-resscn 10928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ℝ ⊆ ℂ
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ℝ ⊆ ℂ)
155 fss 6617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
15610, 153, 155sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
157136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
158 lhop1.ig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
159 dvcn 25085 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
160154, 156, 157, 158, 159syl31anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
161 cncffvrn 24061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((ℝ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
162153, 160, 161sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
16310, 162mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
164163ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
165 rescncf 24060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ)))
166152, 164, 165sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ))
167153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ℝ ⊆ ℂ)
168156ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
169136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐴(,)𝐵) ⊆ ℝ)
170152, 136sstrdi 3933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ ℝ)
17146tgioo2 23966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
17246, 171dvres 25075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑧[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
173167, 168, 169, 170, 172syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
174 iccntr 23984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
175138, 139, 174syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
176175reseq2d 5891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
177173, 176eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
178177dmeqd 5814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
179 ioossicc 13165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧(,)𝑋) ⊆ (𝑧[,]𝑋)
180179, 152sstrid 3932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ (𝐴(,)𝐵))
181158ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
182180, 181sseqtrrd 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺))
183 ssdmres 5914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
184182, 183sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
185178, 184eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = (𝑧(,)𝑋))
186137rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ*)
187100adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ*)
18841adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ)
189137, 188, 142ltled 11123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧𝑋)
190 ubicc2 13197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑋 ∈ (𝑧[,]𝑋))
191186, 187, 189, 190syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ (𝑧[,]𝑋))
192191fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = (𝐺𝑋))
193 lbicc2 13196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑧 ∈ (𝑧[,]𝑋))
194186, 187, 189, 193syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝑧[,]𝑋))
195194fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = (𝐺𝑧))
196192, 195eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) ↔ (𝐺𝑋) = (𝐺𝑧)))
197196biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧))
198197eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋))
199138, 139, 143, 166, 185, 198rolle 25154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0)
200177fveq1d 6776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤))
201 fvres 6793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝑧(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
202200, 201sylan9eq 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
203 dvf 25071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
204158feq2d 6586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
205203, 204mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
206205ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
207206ffnd 6601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
208207adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
209180sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
210 fnfvelrn 6958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
211208, 209, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
212202, 211eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺))
213 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
214212, 213syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
215214rexlimdva 3213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
216199, 215mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 0 ∈ ran (ℝ D 𝐺))
217216ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) = (𝐺𝑧) → 0 ∈ ran (ℝ D 𝐺)))
218135, 217sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 → 0 ∈ ran (ℝ D 𝐺)))
219218necon3bd 2957 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
220129, 219mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
221220ralrimiva 3103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
222221adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
223127, 222, 104rspcdva 3562 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
224119, 124, 223divcld 11751 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) ∈ ℂ)
22524adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐶 ∈ ℂ)
226224, 225subcld 11332 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶) ∈ ℂ)
227226abscld 15148 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ∈ ℝ)
22828adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐸 ∈ ℝ)
229109adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐷 ∈ ℝ*)
230110adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 < 𝐷)
231 iccssioo 13148 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝑅𝑋 < 𝐷)) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
23299, 229, 91, 230, 231syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
2335adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
234232, 233sstrd 3931 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐵))
235 fss 6617 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
2361, 153, 235sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
237 lhop1.if . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
238 dvcn 25085 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
239154, 236, 157, 237, 238syl31anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
240 cncffvrn 24061 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
241153, 239, 240sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2421, 241mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
243242adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
244 rescncf 24060 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
245234, 243, 244sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
246163adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
247 rescncf 24060 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
248234, 246, 247sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
249153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ℝ ⊆ ℂ)
250236adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
251136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐵) ⊆ ℝ)
252 iccssre 13161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑅[,]𝑋) ⊆ ℝ)
25364, 92, 252syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ ℝ)
25446, 171dvres 25075 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
255249, 250, 251, 253, 254syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
256 iccntr 23984 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
25764, 92, 256syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
258257reseq2d 5891 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
259255, 258eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
260259dmeqd 5814 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
26159, 64, 91ltled 11123 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴𝑅)
262 iooss1 13114 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℝ*𝐴𝑅) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
26399, 261, 262syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
264111adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋𝐷)
265 iooss2 13115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐷 ∈ ℝ*𝑋𝐷) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
266229, 264, 265syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
267263, 266sstrd 3931 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐷))
268267, 233sstrd 3931 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐵))
269237adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
270268, 269sseqtrrd 3962 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹))
271 ssdmres 5914 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
272270, 271sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
273260, 272eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
274156adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
27546, 171dvres 25075 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
276249, 274, 251, 253, 275syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
277257reseq2d 5891 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
278276, 277eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
279278dmeqd 5814 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
280158adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
281268, 280sseqtrrd 3962 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺))
282 ssdmres 5914 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
283281, 282sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
284279, 283eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
28564, 92, 98, 245, 248, 273, 284cmvth 25155 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)))
28664rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ*)
287286adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ ℝ*)
288100ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ ℝ*)
28964, 92, 98ltled 11123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅𝑋)
290289adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅𝑋)
291 ubicc2 13197 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑋 ∈ (𝑅[,]𝑋))
292287, 288, 290, 291syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ (𝑅[,]𝑋))
293292fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐹𝑋))
294 lbicc2 13196 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑅 ∈ (𝑅[,]𝑋))
295287, 288, 290, 294syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ (𝑅[,]𝑋))
296295fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐹𝑅))
297293, 296oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐹𝑋) − (𝐹𝑅)))
298278fveq1d 6776 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤))
299 fvres 6793 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
300298, 299sylan9eq 2798 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
301297, 300oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)))
302292fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐺𝑋))
303295fvresd 6794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐺𝑅))
304302, 303oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐺𝑋) − (𝐺𝑅)))
305259fveq1d 6776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤))
306 fvres 6793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
307305, 306sylan9eq 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
308304, 307oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)))
309124adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
310 dvf 25071 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
311237feq2d 6586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
312310, 311mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
313312ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
314268sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
315313, 314ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
316309, 315mulcomd 10996 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
317308, 316eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
318301, 317eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
319119adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
320205ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
321320, 314ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ℂ)
322223adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
323128ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
324320ffnd 6601 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
325324, 314, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
326 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ D 𝐺)‘𝑤) = 0 → (((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
327325, 326syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((ℝ D 𝐺)‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
328327necon3bd 2957 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑤) ≠ 0))
329323, 328mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ≠ 0)
330319, 309, 315, 321, 322, 329divmuleqd 11797 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
331318, 330bitr4d 281 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
332331rexbidva 3225 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
333285, 332mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
334 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐹)‘𝑡) = ((ℝ D 𝐹)‘𝑤))
335 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐺)‘𝑡) = ((ℝ D 𝐺)‘𝑤))
336334, 335oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → (((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
337336fvoveq1d 7297 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑤 → (abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
338337breq1d 5084 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑤 → ((abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
339 lhop1lem.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
340339ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
341267sselda 3921 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐷))
342338, 340, 341rspcdva 3562 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸)
343 fvoveq1 7298 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
344343breq1d 5084 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → ((abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
345342, 344syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
346345rexlimdva 3213 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
347333, 346mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸)
348227, 228, 347ltled 11123 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸)
349 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐹𝑢) = (𝐹𝑅))
350349oveq2d 7291 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐹𝑋) − (𝐹𝑢)) = ((𝐹𝑋) − (𝐹𝑅)))
351 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐺𝑢) = (𝐺𝑅))
352351oveq2d 7291 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐺𝑋) − (𝐺𝑢)) = ((𝐺𝑋) − (𝐺𝑅)))
353350, 352oveq12d 7293 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑅 → (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) = (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))))
354353fvoveq1d 7297 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑅 → (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)))
355354breq1d 5084 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑅 → ((abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸))
356355rspcev 3561 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ∧ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
357105, 348, 356syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
358357adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
359 ssrexv 3988 . . . . . . . . . . . . . . 15 (((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → (∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36057, 358, 359syl2imc 41 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
361360anassrs 468 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < (𝑋𝐴)) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
362361expimpd 454 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
363362rexlimdva 3213 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36449, 363mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
365 inss2 4163 . . . . . . . . . . . . . 14 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ ((𝐴(,)𝑋) ∖ {𝐴})
366 difss 4066 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ∖ {𝐴}) ⊆ (𝐴(,)𝑋)
367365, 366sstri 3930 . . . . . . . . . . . . 13 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)
368367sseli 3917 . . . . . . . . . . . 12 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → 𝑢 ∈ (𝐴(,)𝑋))
369 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
370369oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐹𝑋) − (𝐹𝑧)) = ((𝐹𝑋) − (𝐹𝑢)))
371 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐺𝑧) = (𝐺𝑢))
372371oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑢)))
373370, 372oveq12d 7293 . . . . . . . . . . . . . . 15 (𝑧 = 𝑢 → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
374 eqid 2738 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))
375 ovex 7308 . . . . . . . . . . . . . . 15 (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) ∈ V
376373, 374, 375fvmpt 6875 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴(,)𝑋) → ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
377376fvoveq1d 7297 . . . . . . . . . . . . 13 (𝑢 ∈ (𝐴(,)𝑋) → (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)))
378377breq1d 5084 . . . . . . . . . . . 12 (𝑢 ∈ (𝐴(,)𝑋) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
379368, 378syl 17 . . . . . . . . . . 11 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
380379rexbiia 3180 . . . . . . . . . 10 (∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
381364, 380sylibr 233 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
382 ovex 7308 . . . . . . . . . . 11 (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ V
383382, 374fnmpti 6576 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋)
384 fvoveq1 7298 . . . . . . . . . . . 12 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → (abs‘(𝑥𝐶)) = (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)))
385384breq1d 5084 . . . . . . . . . . 11 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
386385rexima 7113 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋) ∧ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)) → (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
387383, 367, 386mp2an 689 . . . . . . . . 9 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
388381, 387sylibr 233 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸)
389 dfrex2 3170 . . . . . . . 8 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
390388, 389sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
391 ssrab 4006 . . . . . . . 8 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ ℂ ∧ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸))
392391simprbi 497 . . . . . . 7 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
393390, 392nsyl 140 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})
394393expr 457 . . . . 5 ((𝜑𝑣 ∈ (TopOpen‘ℂfld)) → (𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
395394ralrimiva 3103 . . . 4 (𝜑 → ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
396 ralinexa 3191 . . . 4 (∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}) ↔ ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
397395, 396sylib 217 . . 3 (𝜑 → ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
398 fvoveq1 7298 . . . . . . . 8 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (abs‘(𝑥𝐶)) = (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)))
399398breq1d 5084 . . . . . . 7 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
400399notbid 318 . . . . . 6 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (¬ (abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
401400elrab3 3625 . . . . 5 (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
40221, 401syl 17 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
403 eleq2 2827 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 ↔ ((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
404 sseq2 3947 . . . . . . . 8 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
405404anbi2d 629 . . . . . . 7 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ (𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
406405rexbidv 3226 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
407403, 406imbi12d 345 . . . . 5 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))))
4089adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑋) ∈ ℂ)
4091ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
410131, 409syldan 591 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℝ)
411410recnd 11003 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℂ)
412408, 411subcld 11332 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑧)) ∈ ℂ)
413130, 134subcld 11332 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ)
414 eldifsn 4720 . . . . . . . . 9 (((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}) ↔ (((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ ∧ ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
415413, 220, 414sylanbrc 583 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}))
416 ssidd 3944 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
417 difss 4066 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
418417a1i 11 . . . . . . . 8 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
41946cnfldtopon 23946 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
420 cnex 10952 . . . . . . . . . 10 ℂ ∈ V
421420difexi 5252 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
422 txrest 22782 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) ∧ (ℂ ∈ V ∧ (ℂ ∖ {0}) ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))))
423419, 419, 420, 421, 422mp4an 690 . . . . . . . . 9 (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
424 unicntop 23949 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
425424restid 17144 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
426419, 425ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
427426oveq1i 7285 . . . . . . . . 9 (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
428423, 427eqtr2i 2767 . . . . . . . 8 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0})))
4299subid1d 11321 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) = (𝐹𝑋))
430 txtopon 22742 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
431419, 419, 430mp2an 689 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
432431toponrestid 22070 . . . . . . . . . 10 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
433 limcresi 25049 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
434 ioossre 13140 . . . . . . . . . . . . . 14 (𝐴(,)𝑋) ⊆ ℝ
435 resmpt 5945 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)))
436434, 435ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋))
437436oveq1i 7285 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
438433, 437sseqtri 3957 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
439 cncfmptc 24075 . . . . . . . . . . . . 13 (((𝐹𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
4408, 154, 154, 439syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
441 eqidd 2739 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐹𝑋) = (𝐹𝑋))
442440, 39, 441cnmptlimc 25054 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴))
443438, 442sselid 3919 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴))
444 limcresi 25049 . . . . . . . . . . . 12 (𝐹 lim 𝐴) ⊆ ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴)
4451, 114feqresmpt 6838 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)))
446445oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
447444, 446sseqtrid 3973 . . . . . . . . . . 11 (𝜑 → (𝐹 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
448 lhop1.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
449447, 448sseldd 3922 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
45046subcn 24029 . . . . . . . . . . 11 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
451 0cn 10967 . . . . . . . . . . . 12 0 ∈ ℂ
452 opelxpi 5626 . . . . . . . . . . . 12 (((𝐹𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
4539, 451, 452sylancl 586 . . . . . . . . . . 11 (𝜑 → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
454431toponunii 22065 . . . . . . . . . . . 12 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
455454cncnpi 22429 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
456450, 453, 455sylancr 587 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
457408, 411, 416, 416, 46, 432, 443, 449, 456limccnp2 25056 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
458429, 457eqeltrrd 2840 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
45912subid1d 11321 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) = (𝐺𝑋))
460 limcresi 25049 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
461 resmpt 5945 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)))
462434, 461ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋))
463462oveq1i 7285 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
464460, 463sseqtri 3957 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
465 cncfmptc 24075 . . . . . . . . . . . . 13 (((𝐺𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
46611, 154, 154, 465syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
467 eqidd 2739 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐺𝑋) = (𝐺𝑋))
468466, 39, 467cnmptlimc 25054 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴))
469464, 468sselid 3919 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴))
470 limcresi 25049 . . . . . . . . . . . 12 (𝐺 lim 𝐴) ⊆ ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴)
47110, 114feqresmpt 6838 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)))
472471oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
473470, 472sseqtrid 3973 . . . . . . . . . . 11 (𝜑 → (𝐺 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
474 lhop1.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
475473, 474sseldd 3922 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
476 opelxpi 5626 . . . . . . . . . . . 12 (((𝐺𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
47712, 451, 476sylancl 586 . . . . . . . . . . 11 (𝜑 → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
478454cncnpi 22429 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
479450, 477, 478sylancr 587 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
480130, 134, 416, 416, 46, 432, 469, 475, 479limccnp2 25056 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
481459, 480eqeltrrd 2840 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
482 eqid 2738 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))
48346, 482divcn 24031 . . . . . . . . 9 / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))
484 eldifsn 4720 . . . . . . . . . . 11 ((𝐺𝑋) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑋) ≠ 0))
48512, 20, 484sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ (ℂ ∖ {0}))
4869, 485opelxpd 5627 . . . . . . . . 9 (𝜑 → ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0})))
487 resttopon 22312 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
488419, 417, 487mp2an 689 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
489 txtopon 22742 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))) → ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0}))))
490419, 488, 489mp2an 689 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0})))
491490toponunii 22065 . . . . . . . . . 10 (ℂ × (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
492491cncnpi 22429 . . . . . . . . 9 (( / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0}))) → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
493483, 486, 492sylancr 587 . . . . . . . 8 (𝜑 → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
494412, 415, 416, 418, 46, 428, 458, 481, 493limccnp2 25056 . . . . . . 7 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴))
495412, 413, 220divcld 11751 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ ℂ)
496495fmpttd 6989 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))):(𝐴(,)𝑋)⟶ℂ)
497434, 153sstri 3930 . . . . . . . . 9 (𝐴(,)𝑋) ⊆ ℂ
498497a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ ℂ)
499496, 498, 66, 46ellimc2 25041 . . . . . . 7 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))))
500494, 499mpbid 231 . . . . . 6 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢))))
501500simprd 496 . . . . 5 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))
502 notrab 4245 . . . . . 6 (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}
50368cnmetdval 23934 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝐶𝑥)))
504 abssub 15038 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐶𝑥)) = (abs‘(𝑥𝐶)))
505503, 504eqtrd 2778 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
50624, 505sylan 580 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
507506breq1d 5084 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝐶(abs ∘ − )𝑥) ≤ 𝐸 ↔ (abs‘(𝑥𝐶)) ≤ 𝐸))
508507rabbidva 3413 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸})
50932a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51028rexrd 11025 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
511 eqid 2738 . . . . . . . . . 10 {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸}
51247, 511blcld 23661 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℝ*) → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
513509, 24, 510, 512syl3anc 1370 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
514508, 513eqeltrrd 2840 . . . . . . 7 (𝜑 → {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
515424cldopn 22182 . . . . . . 7 ({𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
516514, 515syl 17 . . . . . 6 (𝜑 → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
517502, 516eqeltrrid 2844 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (TopOpen‘ℂfld))
518407, 501, 517rspcdva 3562 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
519402, 518sylbird 259 . . 3 (𝜑 → (¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
520397, 519mt3d 148 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸)
52128recnd 11003 . . . 4 (𝜑𝐸 ∈ ℂ)
522521mulid2d 10993 . . 3 (𝜑 → (1 · 𝐸) = 𝐸)
523 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
524 1lt2 12144 . . . . 5 1 < 2
525524a1i 11 . . . 4 (𝜑 → 1 < 2)
526523, 30, 27, 525ltmul1dd 12827 . . 3 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
527522, 526eqbrtrrd 5098 . 2 (𝜑𝐸 < (2 · 𝐸))
52826, 28, 31, 520, 527lelttrd 11133 1 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  +crp 12730  (,)cioo 13079  [,]cicc 13082  abscabs 14945  t crest 17131  TopOpenctopn 17132  topGenctg 17148  ∞Metcxmet 20582  ballcbl 20584  fldccnfld 20597  TopOnctopon 22059  Clsdccld 22167  intcnt 22168   Cn ccn 22375   CnP ccnp 22376   ×t ctx 22711  cnccncf 24039   lim climc 25026   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  lhop1  25178
  Copyright terms: Public domain W3C validator