MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1lem Structured version   Visualization version   GIF version

Theorem lhop1lem 26052
Description: Lemma for lhop1 26053. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
lhop1lem.e (𝜑𝐸 ∈ ℝ+)
lhop1lem.d (𝜑𝐷 ∈ ℝ)
lhop1lem.db (𝜑𝐷𝐵)
lhop1lem.x (𝜑𝑋 ∈ (𝐴(,)𝐷))
lhop1lem.t (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
lhop1lem.r 𝑅 = (𝐴 + (𝑟 / 2))
Assertion
Ref Expression
lhop1lem (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Distinct variable groups:   𝑧,𝑟,𝐵   𝑡,𝐷   𝜑,𝑟,𝑧   𝑧,𝑅   𝑡,𝑟,𝐴,𝑧   𝐸,𝑟,𝑡   𝑋,𝑟,𝑧   𝐶,𝑟,𝑡,𝑧   𝐹,𝑟,𝑡,𝑧   𝐺,𝑟,𝑡,𝑧
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡)   𝐷(𝑧,𝑟)   𝑅(𝑡,𝑟)   𝐸(𝑧)   𝑋(𝑡)

Proof of Theorem lhop1lem
Dummy variables 𝑣 𝑥 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 lhop1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
3 lhop1lem.db . . . . . . . . 9 (𝜑𝐷𝐵)
4 iooss2 13423 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐷𝐵) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
52, 3, 4syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
6 lhop1lem.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴(,)𝐷))
75, 6sseldd 3984 . . . . . . 7 (𝜑𝑋 ∈ (𝐴(,)𝐵))
81, 7ffvelcdmd 7105 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ ℝ)
98recnd 11289 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ℂ)
10 lhop1.g . . . . . . 7 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
1110, 7ffvelcdmd 7105 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ ℝ)
1211recnd 11289 . . . . 5 (𝜑 → (𝐺𝑋) ∈ ℂ)
13 lhop1.gn0 . . . . . 6 (𝜑 → ¬ 0 ∈ ran 𝐺)
1410ffnd 6737 . . . . . . . . 9 (𝜑𝐺 Fn (𝐴(,)𝐵))
15 fnfvelrn 7100 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐺𝑋) ∈ ran 𝐺)
1614, 7, 15syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ran 𝐺)
17 eleq1 2829 . . . . . . . 8 ((𝐺𝑋) = 0 → ((𝐺𝑋) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
1816, 17syl5ibcom 245 . . . . . . 7 (𝜑 → ((𝐺𝑋) = 0 → 0 ∈ ran 𝐺))
1918necon3bd 2954 . . . . . 6 (𝜑 → (¬ 0 ∈ ran 𝐺 → (𝐺𝑋) ≠ 0))
2013, 19mpd 15 . . . . 5 (𝜑 → (𝐺𝑋) ≠ 0)
219, 12, 20divcld 12043 . . . 4 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ)
22 limccl 25910 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ⊆ ℂ
23 lhop1.c . . . . 5 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2422, 23sselid 3981 . . . 4 (𝜑𝐶 ∈ ℂ)
2521, 24subcld 11620 . . 3 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) − 𝐶) ∈ ℂ)
2625abscld 15475 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ∈ ℝ)
27 lhop1lem.e . . 3 (𝜑𝐸 ∈ ℝ+)
2827rpred 13077 . 2 (𝜑𝐸 ∈ ℝ)
29 2re 12340 . . . 4 2 ∈ ℝ
3029a1i 11 . . 3 (𝜑 → 2 ∈ ℝ)
3130, 28remulcld 11291 . 2 (𝜑 → (2 · 𝐸) ∈ ℝ)
32 cnxmet 24793 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
3332a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
34 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝑣 ∈ (TopOpen‘ℂfld))
35 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → 𝐴𝑣)
36 eliooord 13446 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐷) → (𝐴 < 𝑋𝑋 < 𝐷))
376, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝑋𝑋 < 𝐷))
3837simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑋)
39 lhop1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
40 ioossre 13448 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐷) ⊆ ℝ
4140, 6sselid 3981 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
42 difrp 13073 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4339, 41, 42syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 < 𝑋 ↔ (𝑋𝐴) ∈ ℝ+))
4438, 43mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐴) ∈ ℝ+)
4544adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (𝑋𝐴) ∈ ℝ+)
46 eqid 2737 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746cnfldtopn 24802 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
4847mopni3 24507 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣) ∧ (𝑋𝐴) ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
4933, 34, 35, 45, 48syl31anc 1375 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣))
50 ssrin 4242 . . . . . . . . . . . . . . . 16 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ (𝐴(,)𝑋)))
51 lbioo 13418 . . . . . . . . . . . . . . . . . . 19 ¬ 𝐴 ∈ (𝐴(,)𝑋)
52 disjsn 4711 . . . . . . . . . . . . . . . . . . 19 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝑋))
5351, 52mpbir 231 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝑋) ∩ {𝐴}) = ∅
54 disj3 4454 . . . . . . . . . . . . . . . . . 18 (((𝐴(,)𝑋) ∩ {𝐴}) = ∅ ↔ (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴}))
5553, 54mpbi 230 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝑋) = ((𝐴(,)𝑋) ∖ {𝐴})
5655ineq2i 4217 . . . . . . . . . . . . . . . 16 (𝑣 ∩ (𝐴(,)𝑋)) = (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))
5750, 56sseqtrdi 4024 . . . . . . . . . . . . . . 15 ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))
58 lhop1lem.r . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 = (𝐴 + (𝑟 / 2))
5939adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ)
60 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ+)
6160rpred 13077 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ)
6261rehalfcld 12513 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
6359, 62readdcld 11290 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) ∈ ℝ)
6458, 63eqeltrid 2845 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ)
6564recnd 11289 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℂ)
6639recnd 11289 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ ℂ)
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℂ)
68 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
6968cnmetdval 24791 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7065, 67, 69syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (abs‘(𝑅𝐴)))
7158oveq1i 7441 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅𝐴) = ((𝐴 + (𝑟 / 2)) − 𝐴)
7261recnd 11289 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℂ)
7372halfcld 12511 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℂ)
7467, 73pncan2d 11622 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) − 𝐴) = (𝑟 / 2))
7571, 74eqtrid 2789 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅𝐴) = (𝑟 / 2))
7675fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑅𝐴)) = (abs‘(𝑟 / 2)))
7760rphalfcld 13089 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ+)
7877rpred 13077 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) ∈ ℝ)
7977rpge0d 13081 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 0 ≤ (𝑟 / 2))
8078, 79absidd 15461 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
8170, 76, 803eqtrd 2781 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) = (𝑟 / 2))
82 rphalflt 13064 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
8360, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < 𝑟)
8481, 83eqbrtrd 5165 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(abs ∘ − )𝐴) < 𝑟)
8532a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8661rexrd 11311 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 ∈ ℝ*)
87 elbl3 24402 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8885, 86, 67, 65, 87syl22anc 839 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐴) < 𝑟))
8984, 88mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(ball‘(abs ∘ − ))𝑟))
9059, 77ltaddrpd 13110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < (𝐴 + (𝑟 / 2)))
9190, 58breqtrrdi 5185 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 < 𝑅)
9241adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ)
9392, 59resubcld 11691 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑋𝐴) ∈ ℝ)
94 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑟 < (𝑋𝐴))
9578, 61, 93, 83, 94lttrd 11422 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑟 / 2) < (𝑋𝐴))
9659, 78, 92ltaddsub2d 11864 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴 + (𝑟 / 2)) < 𝑋 ↔ (𝑟 / 2) < (𝑋𝐴)))
9795, 96mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴 + (𝑟 / 2)) < 𝑋)
9858, 97eqbrtrid 5178 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 < 𝑋)
9959rexrd 11311 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴 ∈ ℝ*)
10041rexrd 11311 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ℝ*)
101100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 ∈ ℝ*)
102 elioo2 13428 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝑋 ∈ ℝ*) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10399, 101, 102syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅 ∈ (𝐴(,)𝑋) ↔ (𝑅 ∈ ℝ ∧ 𝐴 < 𝑅𝑅 < 𝑋)))
10464, 91, 98, 103mpbir3and 1343 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝑋))
10589, 104elind 4200 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)))
1069adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑋) ∈ ℂ)
1071adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108 lhop1lem.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐷 ∈ ℝ)
109108rexrd 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐷 ∈ ℝ*)
11037simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑋 < 𝐷)
11141, 108, 110ltled 11409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑋𝐷)
112100, 109, 2, 111, 3xrletrd 13204 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋𝐵)
113 iooss2 13423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
1142, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
115114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
116115, 104sseldd 3984 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ (𝐴(,)𝐵))
117107, 116ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℝ)
118117recnd 11289 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹𝑅) ∈ ℂ)
119106, 118subcld 11620 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
12012adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑋) ∈ ℂ)
12110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
122121, 116ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℝ)
123122recnd 11289 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺𝑅) ∈ ℂ)
124120, 123subcld 11620 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
125 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑅 → (𝐺𝑧) = (𝐺𝑅))
126125oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑅 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑅)))
127126neeq1d 3000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑅 → (((𝐺𝑋) − (𝐺𝑧)) ≠ 0 ↔ ((𝐺𝑋) − (𝐺𝑅)) ≠ 0))
128 lhop1.gd0 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
129128adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
13012adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑋) ∈ ℂ)
131114sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝐴(,)𝐵))
13210ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
133131, 132syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℝ)
134133recnd 11289 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐺𝑧) ∈ ℂ)
135130, 134subeq0ad 11630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 ↔ (𝐺𝑋) = (𝐺𝑧)))
136 ioossre 13448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴(,)𝐵) ⊆ ℝ
137136, 131sselid 3981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ)
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 ∈ ℝ)
13941ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑋 ∈ ℝ)
140 eliooord 13446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝐴(,)𝑋) → (𝐴 < 𝑧𝑧 < 𝑋))
141140adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐴 < 𝑧𝑧 < 𝑋))
142141simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 < 𝑋)
143142adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝑧 < 𝑋)
14439rexrd 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐴 ∈ ℝ*)
145144adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 ∈ ℝ*)
1462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐵 ∈ ℝ*)
147141simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝐴 < 𝑧)
148100, 109, 2, 110, 3xrltletrd 13203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝑋 < 𝐵)
149148adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 < 𝐵)
150 iccssioo 13456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝑧𝑋 < 𝐵)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
151145, 146, 147, 149, 150syl22anc 839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
152151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ (𝐴(,)𝐵))
153 ax-resscn 11212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ℝ ⊆ ℂ
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → ℝ ⊆ ℂ)
155 fss 6752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
15610, 153, 155sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
157136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
158 lhop1.ig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
159 dvcn 25957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
160154, 156, 157, 158, 159syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
161 cncfcdm 24924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((ℝ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
162153, 160, 161sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐺:(𝐴(,)𝐵)⟶ℝ))
16310, 162mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
164163ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
165 rescncf 24923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ)))
166152, 164, 165sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐺 ↾ (𝑧[,]𝑋)) ∈ ((𝑧[,]𝑋)–cn→ℝ))
167153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ℝ ⊆ ℂ)
168156ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
169136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝐴(,)𝐵) ⊆ ℝ)
170152, 136sstrdi 3996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧[,]𝑋) ⊆ ℝ)
171 tgioo4 24826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
17246, 171dvres 25946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑧[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
173167, 168, 169, 170, 172syl22anc 839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))))
174 iccntr 24843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
175138, 139, 174syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋)) = (𝑧(,)𝑋))
176175reseq2d 5997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
177173, 176eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
178177dmeqd 5916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)))
179 ioossicc 13473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧(,)𝑋) ⊆ (𝑧[,]𝑋)
180179, 152sstrid 3995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ (𝐴(,)𝐵))
181158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
182180, 181sseqtrrd 4021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺))
183 ssdmres 6031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑧(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
184182, 183sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom ((ℝ D 𝐺) ↾ (𝑧(,)𝑋)) = (𝑧(,)𝑋))
185178, 184eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → dom (ℝ D (𝐺 ↾ (𝑧[,]𝑋))) = (𝑧(,)𝑋))
186137rexrd 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ ℝ*)
187100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ*)
18841adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ ℝ)
189137, 188, 142ltled 11409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧𝑋)
190 ubicc2 13505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑋 ∈ (𝑧[,]𝑋))
191186, 187, 189, 190syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑋 ∈ (𝑧[,]𝑋))
192191fvresd 6926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = (𝐺𝑋))
193 lbicc2 13504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑧 ∈ ℝ*𝑋 ∈ ℝ*𝑧𝑋) → 𝑧 ∈ (𝑧[,]𝑋))
194186, 187, 189, 193syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → 𝑧 ∈ (𝑧[,]𝑋))
195194fvresd 6926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = (𝐺𝑧))
196192, 195eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) ↔ (𝐺𝑋) = (𝐺𝑧)))
197196biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧))
198197eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((𝐺 ↾ (𝑧[,]𝑋))‘𝑧) = ((𝐺 ↾ (𝑧[,]𝑋))‘𝑋))
199138, 139, 143, 166, 185, 198rolle 26028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0)
200177fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤))
201 fvres 6925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝑧(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑧(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
202200, 201sylan9eq 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
203 dvf 25942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
204158feq2d 6722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
205203, 204mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
206205ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
207206ffnd 6737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
208207adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
209180sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
210 fnfvelrn 7100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
211208, 209, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
212202, 211eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺))
213 eleq1 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
214212, 213syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) ∧ 𝑤 ∈ (𝑧(,)𝑋)) → (((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
215214rexlimdva 3155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → (∃𝑤 ∈ (𝑧(,)𝑋)((ℝ D (𝐺 ↾ (𝑧[,]𝑋)))‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
216199, 215mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧 ∈ (𝐴(,)𝑋)) ∧ (𝐺𝑋) = (𝐺𝑧)) → 0 ∈ ran (ℝ D 𝐺))
217216ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) = (𝐺𝑧) → 0 ∈ ran (ℝ D 𝐺)))
218135, 217sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑧)) = 0 → 0 ∈ ran (ℝ D 𝐺)))
219218necon3bd 2954 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
220129, 219mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
221220ralrimiva 3146 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
222221adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∀𝑧 ∈ (𝐴(,)𝑋)((𝐺𝑋) − (𝐺𝑧)) ≠ 0)
223127, 222, 104rspcdva 3623 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
224119, 124, 223divcld 12043 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) ∈ ℂ)
22524adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐶 ∈ ℂ)
226224, 225subcld 11620 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶) ∈ ℂ)
227226abscld 15475 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ∈ ℝ)
22828adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐸 ∈ ℝ)
229109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐷 ∈ ℝ*)
230110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋 < 𝐷)
231 iccssioo 13456 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝑅𝑋 < 𝐷)) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
23299, 229, 91, 230, 231syl22anc 839 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐷))
2335adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐷) ⊆ (𝐴(,)𝐵))
234232, 233sstrd 3994 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ (𝐴(,)𝐵))
235 fss 6752 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
2361, 153, 235sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
237 lhop1.if . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
238 dvcn 25957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
239154, 236, 157, 237, 238syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
240 cncfcdm 24924 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
241153, 239, 240sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
2421, 241mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
243242adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
244 rescncf 24923 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
245234, 243, 244sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐹 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
246163adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ))
247 rescncf 24923 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅[,]𝑋) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℝ) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ)))
248234, 246, 247sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐺 ↾ (𝑅[,]𝑋)) ∈ ((𝑅[,]𝑋)–cn→ℝ))
249153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ℝ ⊆ ℂ)
250236adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
251136a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝐵) ⊆ ℝ)
252 iccssre 13469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑅[,]𝑋) ⊆ ℝ)
25364, 92, 252syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅[,]𝑋) ⊆ ℝ)
25446, 171dvres 25946 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
255249, 250, 251, 253, 254syl22anc 839 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
256 iccntr 24843 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
25764, 92, 256syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋)) = (𝑅(,)𝑋))
258257reseq2d 5997 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
259255, 258eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
260259dmeqd 5916 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)))
26159, 64, 91ltled 11409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐴𝑅)
262 iooss1 13422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℝ*𝐴𝑅) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
26399, 261, 262syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝑋))
264111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑋𝐷)
265 iooss2 13423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐷 ∈ ℝ*𝑋𝐷) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
266229, 264, 265syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐷))
267263, 266sstrd 3994 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐷))
268267, 233sstrd 3994 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ (𝐴(,)𝐵))
269237adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
270268, 269sseqtrrd 4021 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹))
271 ssdmres 6031 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
272270, 271sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐹) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
273260, 272eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐹 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
274156adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
27546, 171dvres 25946 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ) ∧ ((𝐴(,)𝐵) ⊆ ℝ ∧ (𝑅[,]𝑋) ⊆ ℝ)) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
276249, 274, 251, 253, 275syl22anc 839 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))))
277257reseq2d 5997 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D 𝐺) ↾ ((int‘(topGen‘ran (,)))‘(𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
278276, 277eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
279278dmeqd 5916 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)))
280158adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
281268, 280sseqtrrd 4021 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺))
282 ssdmres 6031 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅(,)𝑋) ⊆ dom (ℝ D 𝐺) ↔ dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
283281, 282sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom ((ℝ D 𝐺) ↾ (𝑅(,)𝑋)) = (𝑅(,)𝑋))
284279, 283eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → dom (ℝ D (𝐺 ↾ (𝑅[,]𝑋))) = (𝑅(,)𝑋))
28564, 92, 98, 245, 248, 273, 284cmvth 26029 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)))
28664rexrd 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅 ∈ ℝ*)
287286adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ ℝ*)
288100ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ ℝ*)
28964, 92, 98ltled 11409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → 𝑅𝑋)
290289adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅𝑋)
291 ubicc2 13505 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑋 ∈ (𝑅[,]𝑋))
292287, 288, 290, 291syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑋 ∈ (𝑅[,]𝑋))
293292fvresd 6926 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐹𝑋))
294 lbicc2 13504 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ*𝑋 ∈ ℝ*𝑅𝑋) → 𝑅 ∈ (𝑅[,]𝑋))
295287, 288, 290, 294syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑅 ∈ (𝑅[,]𝑋))
296295fvresd 6926 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐹𝑅))
297293, 296oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐹𝑋) − (𝐹𝑅)))
298278fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤))
299 fvres 6925 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐺) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
300298, 299sylan9eq 2797 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐺)‘𝑤))
301297, 300oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)))
302292fvresd 6926 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) = (𝐺𝑋))
303295fvresd 6926 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅) = (𝐺𝑅))
304302, 303oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) = ((𝐺𝑋) − (𝐺𝑅)))
305259fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤))
306 fvres 6925 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑅(,)𝑋) → (((ℝ D 𝐹) ↾ (𝑅(,)𝑋))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
307305, 306sylan9eq 2797 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤) = ((ℝ D 𝐹)‘𝑤))
308304, 307oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)))
309124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ∈ ℂ)
310 dvf 25942 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
311237feq2d 6722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
312310, 311mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
313312ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
314268sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐵))
315313, 314ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
316309, 315mulcomd 11282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((𝐺𝑋) − (𝐺𝑅)) · ((ℝ D 𝐹)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
317308, 316eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅))))
318301, 317eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
319119adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑅)) ∈ ℂ)
320205ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
321320, 314ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ℂ)
322223adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑅)) ≠ 0)
323128ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐺))
324320ffnd 6737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
325324, 314, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺))
326 eleq1 2829 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ℝ D 𝐺)‘𝑤) = 0 → (((ℝ D 𝐺)‘𝑤) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
327325, 326syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((ℝ D 𝐺)‘𝑤) = 0 → 0 ∈ ran (ℝ D 𝐺)))
328327necon3bd 2954 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑤) ≠ 0))
329323, 328mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((ℝ D 𝐺)‘𝑤) ≠ 0)
330319, 309, 315, 321, 322, 329divmuleqd 12089 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) · ((ℝ D 𝐺)‘𝑤)) = (((ℝ D 𝐹)‘𝑤) · ((𝐺𝑋) − (𝐺𝑅)))))
331318, 330bitr4d 282 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
332331rexbidva 3177 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)((((𝐹 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐹 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐺 ↾ (𝑅[,]𝑋)))‘𝑤)) = ((((𝐺 ↾ (𝑅[,]𝑋))‘𝑋) − ((𝐺 ↾ (𝑅[,]𝑋))‘𝑅)) · ((ℝ D (𝐹 ↾ (𝑅[,]𝑋)))‘𝑤)) ↔ ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤))))
333285, 332mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
334 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐹)‘𝑡) = ((ℝ D 𝐹)‘𝑤))
335 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → ((ℝ D 𝐺)‘𝑡) = ((ℝ D 𝐺)‘𝑤))
336334, 335oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → (((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)))
337336fvoveq1d 7453 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑤 → (abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
338337breq1d 5153 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑤 → ((abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
339 lhop1lem.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
340339ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸)
341267sselda 3983 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → 𝑤 ∈ (𝐴(,)𝐷))
342338, 340, 341rspcdva 3623 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸)
343 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)))
344343breq1d 5153 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → ((abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸 ↔ (abs‘((((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) − 𝐶)) < 𝐸))
345342, 344syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) ∧ 𝑤 ∈ (𝑅(,)𝑋)) → ((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
346345rexlimdva 3155 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (∃𝑤 ∈ (𝑅(,)𝑋)(((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) = (((ℝ D 𝐹)‘𝑤) / ((ℝ D 𝐺)‘𝑤)) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸))
347333, 346mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) < 𝐸)
348227, 228, 347ltled 11409 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸)
349 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐹𝑢) = (𝐹𝑅))
350349oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐹𝑋) − (𝐹𝑢)) = ((𝐹𝑋) − (𝐹𝑅)))
351 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑅 → (𝐺𝑢) = (𝐺𝑅))
352351oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑅 → ((𝐺𝑋) − (𝐺𝑢)) = ((𝐺𝑋) − (𝐺𝑅)))
353350, 352oveq12d 7449 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑅 → (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) = (((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))))
354353fvoveq1d 7453 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑅 → (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)))
355354breq1d 5153 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑅 → ((abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸))
356355rspcev 3622 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ∧ (abs‘((((𝐹𝑋) − (𝐹𝑅)) / ((𝐺𝑋) − (𝐺𝑅))) − 𝐶)) ≤ 𝐸) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
357105, 348, 356syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
358357adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
359 ssrexv 4053 . . . . . . . . . . . . . . 15 (((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋)) ⊆ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → (∃𝑢 ∈ ((𝐴(ball‘(abs ∘ − ))𝑟) ∩ (𝐴(,)𝑋))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36057, 358, 359syl2imc 41 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ (𝑟 ∈ ℝ+𝑟 < (𝑋𝐴))) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
361360anassrs 467 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < (𝑋𝐴)) → ((𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣 → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
362361expimpd 453 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
363362rexlimdva 3155 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → (∃𝑟 ∈ ℝ+ (𝑟 < (𝑋𝐴) ∧ (𝐴(ball‘(abs ∘ − ))𝑟) ⊆ 𝑣) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
36449, 363mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
365 inss2 4238 . . . . . . . . . . . . . 14 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ ((𝐴(,)𝑋) ∖ {𝐴})
366 difss 4136 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ∖ {𝐴}) ⊆ (𝐴(,)𝑋)
367365, 366sstri 3993 . . . . . . . . . . . . 13 (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)
368367sseli 3979 . . . . . . . . . . . 12 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → 𝑢 ∈ (𝐴(,)𝑋))
369 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐹𝑧) = (𝐹𝑢))
370369oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐹𝑋) − (𝐹𝑧)) = ((𝐹𝑋) − (𝐹𝑢)))
371 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝐺𝑧) = (𝐺𝑢))
372371oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑢 → ((𝐺𝑋) − (𝐺𝑧)) = ((𝐺𝑋) − (𝐺𝑢)))
373370, 372oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑧 = 𝑢 → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
374 eqid 2737 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))
375 ovex 7464 . . . . . . . . . . . . . . 15 (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) ∈ V
376373, 374, 375fvmpt 7016 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴(,)𝑋) → ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) = (((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))))
377376fvoveq1d 7453 . . . . . . . . . . . . 13 (𝑢 ∈ (𝐴(,)𝑋) → (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) = (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)))
378377breq1d 5153 . . . . . . . . . . . 12 (𝑢 ∈ (𝐴(,)𝑋) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
379368, 378syl 17 . . . . . . . . . . 11 (𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) → ((abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ (abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸))
380379rexbiia 3092 . . . . . . . . . 10 (∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘((((𝐹𝑋) − (𝐹𝑢)) / ((𝐺𝑋) − (𝐺𝑢))) − 𝐶)) ≤ 𝐸)
381364, 380sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
382 ovex 7464 . . . . . . . . . . 11 (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ V
383382, 374fnmpti 6711 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋)
384 fvoveq1 7454 . . . . . . . . . . . 12 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → (abs‘(𝑥𝐶)) = (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)))
385384breq1d 5153 . . . . . . . . . . 11 (𝑥 = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
386385rexima 7258 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) Fn (𝐴(,)𝑋) ∧ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})) ⊆ (𝐴(,)𝑋)) → (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸))
387383, 367, 386mp2an 692 . . . . . . . . 9 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ∃𝑢 ∈ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))(abs‘(((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))))‘𝑢) − 𝐶)) ≤ 𝐸)
388381, 387sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸)
389 dfrex2 3073 . . . . . . . 8 (∃𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴})))(abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
390388, 389sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
391 ssrab 4073 . . . . . . . 8 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ ℂ ∧ ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸))
392391simprbi 496 . . . . . . 7 (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∀𝑥 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ¬ (abs‘(𝑥𝐶)) ≤ 𝐸)
393390, 392nsyl 140 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐴𝑣)) → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})
394393expr 456 . . . . 5 ((𝜑𝑣 ∈ (TopOpen‘ℂfld)) → (𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
395394ralrimiva 3146 . . . 4 (𝜑 → ∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
396 ralinexa 3101 . . . 4 (∀𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 → ¬ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}) ↔ ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
397395, 396sylib 218 . . 3 (𝜑 → ¬ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
398 fvoveq1 7454 . . . . . . . 8 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (abs‘(𝑥𝐶)) = (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)))
399398breq1d 5153 . . . . . . 7 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → ((abs‘(𝑥𝐶)) ≤ 𝐸 ↔ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
400399notbid 318 . . . . . 6 (𝑥 = ((𝐹𝑋) / (𝐺𝑋)) → (¬ (abs‘(𝑥𝐶)) ≤ 𝐸 ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
401400elrab3 3693 . . . . 5 (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
40221, 401syl 17 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ↔ ¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸))
403 eleq2 2830 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 ↔ ((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
404 sseq2 4010 . . . . . . . 8 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))
405404anbi2d 630 . . . . . . 7 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ (𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
406405rexbidv 3179 . . . . . 6 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
407403, 406imbi12d 344 . . . . 5 (𝑢 = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ((((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}))))
4089adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑋) ∈ ℂ)
4091ffvelcdmda 7104 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
410131, 409syldan 591 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℝ)
411410recnd 11289 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (𝐹𝑧) ∈ ℂ)
412408, 411subcld 11620 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐹𝑋) − (𝐹𝑧)) ∈ ℂ)
413130, 134subcld 11620 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ)
414 eldifsn 4786 . . . . . . . . 9 (((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}) ↔ (((𝐺𝑋) − (𝐺𝑧)) ∈ ℂ ∧ ((𝐺𝑋) − (𝐺𝑧)) ≠ 0))
415413, 220, 414sylanbrc 583 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → ((𝐺𝑋) − (𝐺𝑧)) ∈ (ℂ ∖ {0}))
416 ssidd 4007 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
417 difss 4136 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
418417a1i 11 . . . . . . . 8 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
41946cnfldtopon 24803 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
420 cnex 11236 . . . . . . . . . 10 ℂ ∈ V
421420difexi 5330 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ V
422 txrest 23639 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) ∧ (ℂ ∈ V ∧ (ℂ ∖ {0}) ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))))
423419, 419, 420, 421, 422mp4an 693 . . . . . . . . 9 (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
424 unicntop 24806 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
425424restid 17478 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
426419, 425ax-mp 5 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
427426oveq1i 7441 . . . . . . . . 9 (((TopOpen‘ℂfld) ↾t ℂ) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
428423, 427eqtr2i 2766 . . . . . . . 8 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × (ℂ ∖ {0})))
4299subid1d 11609 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) = (𝐹𝑋))
430 txtopon 23599 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
431419, 419, 430mp2an 692 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
432431toponrestid 22927 . . . . . . . . . 10 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
433 limcresi 25920 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
434 ioossre 13448 . . . . . . . . . . . . . 14 (𝐴(,)𝑋) ⊆ ℝ
435 resmpt 6055 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)))
436434, 435ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋))
437436oveq1i 7441 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐹𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
438433, 437sseqtri 4032 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴)
439 cncfmptc 24938 . . . . . . . . . . . . 13 (((𝐹𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
4408, 154, 154, 439syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐹𝑋)) ∈ (ℝ–cn→ℝ))
441 eqidd 2738 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐹𝑋) = (𝐹𝑋))
442440, 39, 441cnmptlimc 25925 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐹𝑋)) lim 𝐴))
443438, 442sselid 3981 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑋)) lim 𝐴))
444 limcresi 25920 . . . . . . . . . . . 12 (𝐹 lim 𝐴) ⊆ ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴)
4451, 114feqresmpt 6978 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)))
446445oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → ((𝐹 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
447444, 446sseqtrid 4026 . . . . . . . . . . 11 (𝜑 → (𝐹 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
448 lhop1.f0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
449447, 448sseldd 3984 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑧)) lim 𝐴))
45046subcn 24888 . . . . . . . . . . 11 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
451 0cn 11253 . . . . . . . . . . . 12 0 ∈ ℂ
452 opelxpi 5722 . . . . . . . . . . . 12 (((𝐹𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
4539, 451, 452sylancl 586 . . . . . . . . . . 11 (𝜑 → ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ))
454431toponunii 22922 . . . . . . . . . . . 12 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
455454cncnpi 23286 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
456450, 453, 455sylancr 587 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), 0⟩))
457408, 411, 416, 416, 46, 432, 443, 449, 456limccnp2 25927 . . . . . . . . 9 (𝜑 → ((𝐹𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
458429, 457eqeltrrd 2842 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐹𝑋) − (𝐹𝑧))) lim 𝐴))
45912subid1d 11609 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) = (𝐺𝑋))
460 limcresi 25920 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴)
461 resmpt 6055 . . . . . . . . . . . . . 14 ((𝐴(,)𝑋) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)))
462434, 461ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋))
463462oveq1i 7441 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ (𝐺𝑋)) ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
464460, 463sseqtri 4032 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴)
465 cncfmptc 24938 . . . . . . . . . . . . 13 (((𝐺𝑋) ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
46611, 154, 154, 465syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐺𝑋)) ∈ (ℝ–cn→ℝ))
467 eqidd 2738 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝐺𝑋) = (𝐺𝑋))
468466, 39, 467cnmptlimc 25925 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ ℝ ↦ (𝐺𝑋)) lim 𝐴))
469464, 468sselid 3981 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑋)) lim 𝐴))
470 limcresi 25920 . . . . . . . . . . . 12 (𝐺 lim 𝐴) ⊆ ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴)
47110, 114feqresmpt 6978 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ↾ (𝐴(,)𝑋)) = (𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)))
472471oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → ((𝐺 ↾ (𝐴(,)𝑋)) lim 𝐴) = ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
473470, 472sseqtrid 4026 . . . . . . . . . . 11 (𝜑 → (𝐺 lim 𝐴) ⊆ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
474 lhop1.g0 . . . . . . . . . . 11 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
475473, 474sseldd 3984 . . . . . . . . . 10 (𝜑 → 0 ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (𝐺𝑧)) lim 𝐴))
476 opelxpi 5722 . . . . . . . . . . . 12 (((𝐺𝑋) ∈ ℂ ∧ 0 ∈ ℂ) → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
47712, 451, 476sylancl 586 . . . . . . . . . . 11 (𝜑 → ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ))
478454cncnpi 23286 . . . . . . . . . . 11 (( − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐺𝑋), 0⟩ ∈ (ℂ × ℂ)) → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
479450, 477, 478sylancr 587 . . . . . . . . . 10 (𝜑 → − ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨(𝐺𝑋), 0⟩))
480130, 134, 416, 416, 46, 432, 469, 475, 479limccnp2 25927 . . . . . . . . 9 (𝜑 → ((𝐺𝑋) − 0) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
481459, 480eqeltrrd 2842 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ ((𝐺𝑋) − (𝐺𝑧))) lim 𝐴))
482 eqid 2737 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))
48346, 482divcn 24892 . . . . . . . . 9 / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))
484 eldifsn 4786 . . . . . . . . . . 11 ((𝐺𝑋) ∈ (ℂ ∖ {0}) ↔ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑋) ≠ 0))
48512, 20, 484sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) ∈ (ℂ ∖ {0}))
4869, 485opelxpd 5724 . . . . . . . . 9 (𝜑 → ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0})))
487 resttopon 23169 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
488419, 417, 487mp2an 692 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
489 txtopon 23599 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))) → ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0}))))
490419, 488, 489mp2an 692 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) ∈ (TopOn‘(ℂ × (ℂ ∖ {0})))
491490toponunii 22922 . . . . . . . . . 10 (ℂ × (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))
492491cncnpi 23286 . . . . . . . . 9 (( / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)) ∧ ⟨(𝐹𝑋), (𝐺𝑋)⟩ ∈ (ℂ × (ℂ ∖ {0}))) → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
493483, 486, 492sylancr 587 . . . . . . . 8 (𝜑 → / ∈ ((((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) CnP (TopOpen‘ℂfld))‘⟨(𝐹𝑋), (𝐺𝑋)⟩))
494412, 415, 416, 418, 46, 428, 458, 481, 493limccnp2 25927 . . . . . . 7 (𝜑 → ((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴))
495412, 413, 220divcld 12043 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝑋)) → (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧))) ∈ ℂ)
496495fmpttd 7135 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))):(𝐴(,)𝑋)⟶ℂ)
497434, 153sstri 3993 . . . . . . . . 9 (𝐴(,)𝑋) ⊆ ℂ
498497a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ ℂ)
499496, 498, 66, 46ellimc2 25912 . . . . . . 7 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) lim 𝐴) ↔ (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))))
500494, 499mpbid 232 . . . . . 6 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢))))
501500simprd 495 . . . . 5 (𝜑 → ∀𝑢 ∈ (TopOpen‘ℂfld)(((𝐹𝑋) / (𝐺𝑋)) ∈ 𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ 𝑢)))
502 notrab 4322 . . . . . 6 (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) = {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸}
50368cnmetdval 24791 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝐶𝑥)))
504 abssub 15365 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐶𝑥)) = (abs‘(𝑥𝐶)))
505503, 504eqtrd 2777 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
50624, 505sylan 580 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝐶(abs ∘ − )𝑥) = (abs‘(𝑥𝐶)))
507506breq1d 5153 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝐶(abs ∘ − )𝑥) ≤ 𝐸 ↔ (abs‘(𝑥𝐶)) ≤ 𝐸))
508507rabbidva 3443 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸})
50932a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51028rexrd 11311 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
511 eqid 2737 . . . . . . . . . 10 {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} = {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸}
51247, 511blcld 24518 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℝ*) → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
513509, 24, 510, 512syl3anc 1373 . . . . . . . 8 (𝜑 → {𝑥 ∈ ℂ ∣ (𝐶(abs ∘ − )𝑥) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
514508, 513eqeltrrd 2842 . . . . . . 7 (𝜑 → {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)))
515424cldopn 23039 . . . . . . 7 ({𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
516514, 515syl 17 . . . . . 6 (𝜑 → (ℂ ∖ {𝑥 ∈ ℂ ∣ (abs‘(𝑥𝐶)) ≤ 𝐸}) ∈ (TopOpen‘ℂfld))
517502, 516eqeltrrid 2846 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} ∈ (TopOpen‘ℂfld))
518407, 501, 517rspcdva 3623 . . . 4 (𝜑 → (((𝐹𝑋) / (𝐺𝑋)) ∈ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸} → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
519402, 518sylbird 260 . . 3 (𝜑 → (¬ (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐴𝑣 ∧ ((𝑧 ∈ (𝐴(,)𝑋) ↦ (((𝐹𝑋) − (𝐹𝑧)) / ((𝐺𝑋) − (𝐺𝑧)))) “ (𝑣 ∩ ((𝐴(,)𝑋) ∖ {𝐴}))) ⊆ {𝑥 ∈ ℂ ∣ ¬ (abs‘(𝑥𝐶)) ≤ 𝐸})))
520397, 519mt3d 148 . 2 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) ≤ 𝐸)
52128recnd 11289 . . . 4 (𝜑𝐸 ∈ ℂ)
522521mullidd 11279 . . 3 (𝜑 → (1 · 𝐸) = 𝐸)
523 1red 11262 . . . 4 (𝜑 → 1 ∈ ℝ)
524 1lt2 12437 . . . . 5 1 < 2
525524a1i 11 . . . 4 (𝜑 → 1 < 2)
526523, 30, 27, 525ltmul1dd 13132 . . 3 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
527522, 526eqbrtrrd 5167 . 2 (𝜑𝐸 < (2 · 𝐸))
52826, 28, 31, 520, 527lelttrd 11419 1 (𝜑 → (abs‘(((𝐹𝑋) / (𝐺𝑋)) − 𝐶)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cin 3950  wss 3951  c0 4333  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  (,)cioo 13387  [,]cicc 13390  abscabs 15273  t crest 17465  TopOpenctopn 17466  topGenctg 17482  ∞Metcxmet 21349  ballcbl 21351  fldccnfld 21364  TopOnctopon 22916  Clsdccld 23024  intcnt 23025   Cn ccn 23232   CnP ccnp 23233   ×t ctx 23568  cnccncf 24902   lim climc 25897   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  lhop1  26053
  Copyright terms: Public domain W3C validator