MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntreq0 Structured version   Visualization version   GIF version

Theorem ntreq0 22277
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntreq0 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ntreq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21ntrval 22236 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
32eqeq1d 2738 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ (𝐽 ∩ 𝒫 𝑆) = ∅))
4 neq0 4285 . . . . 5 (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆))
54con1bii 357 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ (𝐽 ∩ 𝒫 𝑆) = ∅)
6 ancom 462 . . . . . . . . . 10 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥))
7 elin 3908 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥𝐽𝑥 ∈ 𝒫 𝑆))
87anbi1i 625 . . . . . . . . . 10 ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ ((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥))
9 anass 470 . . . . . . . . . 10 (((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
106, 8, 93bitri 297 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1110exbii 1848 . . . . . . . 8 (∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
12 eluni 4847 . . . . . . . 8 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)))
13 df-rex 3072 . . . . . . . 8 (∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1411, 12, 133bitr4i 303 . . . . . . 7 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
1514exbii 1848 . . . . . 6 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
16 rexcom4 3268 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
17 19.42v 1955 . . . . . . 7 (∃𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1817rexbii 3094 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1915, 16, 183bitr2i 299 . . . . 5 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
2019notbii 320 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
215, 20bitr3i 277 . . 3 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
22 ralinexa 3101 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
23 velpw 4544 . . . . 5 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
24 neq0 4285 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2524con1bii 357 . . . . 5 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
2623, 25imbi12i 351 . . . 4 ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ (𝑥𝑆𝑥 = ∅))
2726ralbii 3093 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
2821, 22, 273bitr2i 299 . 2 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
293, 28bitrdi 287 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104  wral 3062  wrex 3071  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539   cuni 4844  cfv 6458  Topctop 22091  intcnt 22217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-top 22092  df-ntr 22220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator