MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntreq0 Structured version   Visualization version   GIF version

Theorem ntreq0 23050
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntreq0 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ntreq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21ntrval 23009 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
32eqeq1d 2736 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ (𝐽 ∩ 𝒫 𝑆) = ∅))
4 neq0 4334 . . . . 5 (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆))
54con1bii 356 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ (𝐽 ∩ 𝒫 𝑆) = ∅)
6 ancom 460 . . . . . . . . . 10 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥))
7 elin 3949 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥𝐽𝑥 ∈ 𝒫 𝑆))
87anbi1i 624 . . . . . . . . . 10 ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ ((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥))
9 anass 468 . . . . . . . . . 10 (((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
106, 8, 93bitri 297 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1110exbii 1847 . . . . . . . 8 (∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
12 eluni 4892 . . . . . . . 8 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)))
13 df-rex 3060 . . . . . . . 8 (∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1411, 12, 133bitr4i 303 . . . . . . 7 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
1514exbii 1847 . . . . . 6 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
16 rexcom4 3273 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
17 19.42v 1952 . . . . . . 7 (∃𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1817rexbii 3082 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1915, 16, 183bitr2i 299 . . . . 5 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
2019notbii 320 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
215, 20bitr3i 277 . . 3 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
22 ralinexa 3089 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
23 velpw 4587 . . . . 5 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
24 neq0 4334 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2524con1bii 356 . . . . 5 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
2623, 25imbi12i 350 . . . 4 ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ (𝑥𝑆𝑥 = ∅))
2726ralbii 3081 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
2821, 22, 273bitr2i 299 . 2 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
293, 28bitrdi 287 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3050  wrex 3059  cin 3932  wss 3933  c0 4315  𝒫 cpw 4582   cuni 4889  cfv 6542  Topctop 22866  intcnt 22990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22867  df-ntr 22993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator