MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntreq0 Structured version   Visualization version   GIF version

Theorem ntreq0 23106
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntreq0 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ntreq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21ntrval 23065 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
32eqeq1d 2742 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ (𝐽 ∩ 𝒫 𝑆) = ∅))
4 neq0 4375 . . . . 5 (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆))
54con1bii 356 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ (𝐽 ∩ 𝒫 𝑆) = ∅)
6 ancom 460 . . . . . . . . . 10 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥))
7 elin 3992 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥𝐽𝑥 ∈ 𝒫 𝑆))
87anbi1i 623 . . . . . . . . . 10 ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ ((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥))
9 anass 468 . . . . . . . . . 10 (((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
106, 8, 93bitri 297 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1110exbii 1846 . . . . . . . 8 (∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
12 eluni 4934 . . . . . . . 8 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)))
13 df-rex 3077 . . . . . . . 8 (∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1411, 12, 133bitr4i 303 . . . . . . 7 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
1514exbii 1846 . . . . . 6 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
16 rexcom4 3294 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
17 19.42v 1953 . . . . . . 7 (∃𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1817rexbii 3100 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1915, 16, 183bitr2i 299 . . . . 5 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
2019notbii 320 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
215, 20bitr3i 277 . . 3 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
22 ralinexa 3107 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
23 velpw 4627 . . . . 5 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
24 neq0 4375 . . . . . 6 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2524con1bii 356 . . . . 5 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
2623, 25imbi12i 350 . . . 4 ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ (𝑥𝑆𝑥 = ∅))
2726ralbii 3099 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
2821, 22, 273bitr2i 299 . 2 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
293, 28bitrdi 287 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931  cfv 6573  Topctop 22920  intcnt 23046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-ntr 23049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator