Step | Hyp | Ref
| Expression |
1 | | clscld.1 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | ntrval 22168 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | 2 | eqeq1d 2741 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∪ (𝐽
∩ 𝒫 𝑆) =
∅)) |
4 | | neq0 4284 |
. . . . 5
⊢ (¬
∪ (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆)) |
5 | 4 | con1bii 356 |
. . . 4
⊢ (¬
∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆) ↔ ∪ (𝐽
∩ 𝒫 𝑆) =
∅) |
6 | | ancom 460 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥)) |
7 | | elin 3907 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆)) |
8 | 7 | anbi1i 623 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥) ↔ ((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥)) |
9 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
10 | 6, 8, 9 | 3bitri 296 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
11 | 10 | exbii 1853 |
. . . . . . . 8
⊢
(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
12 | | eluni 4847 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆))) |
13 | | df-rex 3071 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑥(𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
14 | 11, 12, 13 | 3bitr4i 302 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
15 | 14 | exbii 1853 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑦∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
16 | | rexcom4 3181 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐽 ∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑦∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
17 | | 19.42v 1960 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
18 | 17 | rexbii 3179 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐽 ∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
19 | 15, 16, 18 | 3bitr2i 298 |
. . . . 5
⊢
(∃𝑦 𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
20 | 19 | notbii 319 |
. . . 4
⊢ (¬
∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
21 | 5, 20 | bitr3i 276 |
. . 3
⊢ (∪ (𝐽
∩ 𝒫 𝑆) =
∅ ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
22 | | ralinexa 3192 |
. . 3
⊢
(∀𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
23 | | velpw 4543 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆) |
24 | | neq0 4284 |
. . . . . 6
⊢ (¬
𝑥 = ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
25 | 24 | con1bii 356 |
. . . . 5
⊢ (¬
∃𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅) |
26 | 23, 25 | imbi12i 350 |
. . . 4
⊢ ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
27 | 26 | ralbii 3092 |
. . 3
⊢
(∀𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
28 | 21, 22, 27 | 3bitr2i 298 |
. 2
⊢ (∪ (𝐽
∩ 𝒫 𝑆) =
∅ ↔ ∀𝑥
∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
29 | 3, 28 | bitrdi 286 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) |