| Step | Hyp | Ref
| Expression |
| 1 | | clscld.1 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | ntrval 23009 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 3 | 2 | eqeq1d 2736 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∪ (𝐽
∩ 𝒫 𝑆) =
∅)) |
| 4 | | neq0 4334 |
. . . . 5
⊢ (¬
∪ (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 5 | 4 | con1bii 356 |
. . . 4
⊢ (¬
∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆) ↔ ∪ (𝐽
∩ 𝒫 𝑆) =
∅) |
| 6 | | ancom 460 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥)) |
| 7 | | elin 3949 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆)) |
| 8 | 7 | anbi1i 624 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥) ↔ ((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥)) |
| 9 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
| 10 | 6, 8, 9 | 3bitri 297 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
| 11 | 10 | exbii 1847 |
. . . . . . . 8
⊢
(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
| 12 | | eluni 4892 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆))) |
| 13 | | df-rex 3060 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑥(𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
| 14 | 11, 12, 13 | 3bitr4i 303 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
| 15 | 14 | exbii 1847 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑦∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
| 16 | | rexcom4 3273 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐽 ∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑦∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
| 17 | | 19.42v 1952 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
| 18 | 17 | rexbii 3082 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐽 ∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
| 19 | 15, 16, 18 | 3bitr2i 299 |
. . . . 5
⊢
(∃𝑦 𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
| 20 | 19 | notbii 320 |
. . . 4
⊢ (¬
∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
| 21 | 5, 20 | bitr3i 277 |
. . 3
⊢ (∪ (𝐽
∩ 𝒫 𝑆) =
∅ ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
| 22 | | ralinexa 3089 |
. . 3
⊢
(∀𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
| 23 | | velpw 4587 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆) |
| 24 | | neq0 4334 |
. . . . . 6
⊢ (¬
𝑥 = ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
| 25 | 24 | con1bii 356 |
. . . . 5
⊢ (¬
∃𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅) |
| 26 | 23, 25 | imbi12i 350 |
. . . 4
⊢ ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
| 27 | 26 | ralbii 3081 |
. . 3
⊢
(∀𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
| 28 | 21, 22, 27 | 3bitr2i 299 |
. 2
⊢ (∪ (𝐽
∩ 𝒫 𝑆) =
∅ ↔ ∀𝑥
∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
| 29 | 3, 28 | bitrdi 287 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) |