MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmodislmodOLD Structured version   Visualization version   GIF version

Theorem rmodislmodOLD 20909
Description: Obsolete version of rmodislmod 20908 as of 18-Oct-2024. The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 20840 of a left module, see also islmod 20842. (Contributed by AV, 3-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rmodislmod.v 𝑉 = (Base‘𝑅)
rmodislmod.a + = (+g𝑅)
rmodislmod.s · = ( ·𝑠𝑅)
rmodislmod.f 𝐹 = (Scalar‘𝑅)
rmodislmod.k 𝐾 = (Base‘𝐹)
rmodislmod.p = (+g𝐹)
rmodislmod.t × = (.r𝐹)
rmodislmod.u 1 = (1r𝐹)
rmodislmod.r (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
rmodislmod.m = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
rmodislmod.l 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
Assertion
Ref Expression
rmodislmodOLD (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Distinct variable groups:   × ,𝑞,𝑟,𝑤,𝑥   × ,𝑠,𝑣   · ,𝑞,𝑟,𝑤,𝑥   · ,𝑠,𝑣   𝐾,𝑞,𝑟,𝑥   𝐾,𝑠,𝑣   𝑉,𝑞,𝑟,𝑤,𝑥   𝑉,𝑠,𝑣   𝐹,𝑠,𝑣   1 ,𝑠,𝑣   1 ,𝑞,𝑟,𝑤,𝑥   + ,𝑞,𝑟,𝑤,𝑥   + ,𝑠,𝑣   ,𝑞,𝑟,𝑤,𝑥   ,𝑠,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐹(𝑥,𝑤,𝑟,𝑞)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐾(𝑤)   𝐿(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)

Proof of Theorem rmodislmodOLD
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmodislmod.v . . . . 5 𝑉 = (Base‘𝑅)
2 baseid 17218 . . . . . 6 Base = Slot (Base‘ndx)
3 df-base 17216 . . . . . . . 8 Base = Slot 1
4 1nn 12277 . . . . . . . 8 1 ∈ ℕ
53, 4ndxarg 17200 . . . . . . 7 (Base‘ndx) = 1
6 1re 11266 . . . . . . . . 9 1 ∈ ℝ
7 1lt6 12451 . . . . . . . . 9 1 < 6
86, 7ltneii 11379 . . . . . . . 8 1 ≠ 6
9 vscandx 17335 . . . . . . . 8 ( ·𝑠 ‘ndx) = 6
108, 9neeqtrri 3004 . . . . . . 7 1 ≠ ( ·𝑠 ‘ndx)
115, 10eqnetri 3001 . . . . . 6 (Base‘ndx) ≠ ( ·𝑠 ‘ndx)
122, 11setsnid 17213 . . . . 5 (Base‘𝑅) = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
131, 12eqtri 2754 . . . 4 𝑉 = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
14 rmodislmod.l . . . . . 6 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
1514eqcomi 2735 . . . . 5 (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩) = 𝐿
1615fveq2i 6906 . . . 4 (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = (Base‘𝐿)
1713, 16eqtri 2754 . . 3 𝑉 = (Base‘𝐿)
1817a1i 11 . 2 (𝐹 ∈ CRing → 𝑉 = (Base‘𝐿))
19 plusgid 17295 . . . . 5 +g = Slot (+g‘ndx)
20 plusgndx 17294 . . . . . 6 (+g‘ndx) = 2
21 2re 12340 . . . . . . . 8 2 ∈ ℝ
22 2lt6 12450 . . . . . . . 8 2 < 6
2321, 22ltneii 11379 . . . . . . 7 2 ≠ 6
2423, 9neeqtrri 3004 . . . . . 6 2 ≠ ( ·𝑠 ‘ndx)
2520, 24eqnetri 3001 . . . . 5 (+g‘ndx) ≠ ( ·𝑠 ‘ndx)
2619, 25setsnid 17213 . . . 4 (+g𝑅) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
27 rmodislmod.a . . . 4 + = (+g𝑅)
2814fveq2i 6906 . . . 4 (+g𝐿) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
2926, 27, 283eqtr4i 2764 . . 3 + = (+g𝐿)
3029a1i 11 . 2 (𝐹 ∈ CRing → + = (+g𝐿))
31 scaid 17331 . . . . 5 Scalar = Slot (Scalar‘ndx)
32 scandx 17330 . . . . . 6 (Scalar‘ndx) = 5
33 5re 12353 . . . . . . . 8 5 ∈ ℝ
34 5lt6 12447 . . . . . . . 8 5 < 6
3533, 34ltneii 11379 . . . . . . 7 5 ≠ 6
3635, 9neeqtrri 3004 . . . . . 6 5 ≠ ( ·𝑠 ‘ndx)
3732, 36eqnetri 3001 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
3831, 37setsnid 17213 . . . 4 (Scalar‘𝑅) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
39 rmodislmod.f . . . 4 𝐹 = (Scalar‘𝑅)
4014fveq2i 6906 . . . 4 (Scalar‘𝐿) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
4138, 39, 403eqtr4i 2764 . . 3 𝐹 = (Scalar‘𝐿)
4241a1i 11 . 2 (𝐹 ∈ CRing → 𝐹 = (Scalar‘𝐿))
43 rmodislmod.r . . . . . 6 (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
4443simp1i 1136 . . . . 5 𝑅 ∈ Grp
45 rmodislmod.k . . . . . . 7 𝐾 = (Base‘𝐹)
4645fvexi 6917 . . . . . 6 𝐾 ∈ V
471fvexi 6917 . . . . . 6 𝑉 ∈ V
48 rmodislmod.m . . . . . . 7 = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
4948mpoexg 8092 . . . . . 6 ((𝐾 ∈ V ∧ 𝑉 ∈ V) → ∈ V)
5046, 47, 49mp2an 690 . . . . 5 ∈ V
51 vscaid 17336 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
5251setsid 17212 . . . . 5 ((𝑅 ∈ Grp ∧ ∈ V) → = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)))
5344, 50, 52mp2an 690 . . . 4 = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
5415fveq2i 6906 . . . 4 ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = ( ·𝑠𝐿)
5553, 54eqtri 2754 . . 3 = ( ·𝑠𝐿)
5655a1i 11 . 2 (𝐹 ∈ CRing → = ( ·𝑠𝐿))
5745a1i 11 . 2 (𝐹 ∈ CRing → 𝐾 = (Base‘𝐹))
58 rmodislmod.p . . 3 = (+g𝐹)
5958a1i 11 . 2 (𝐹 ∈ CRing → = (+g𝐹))
60 rmodislmod.t . . 3 × = (.r𝐹)
6160a1i 11 . 2 (𝐹 ∈ CRing → × = (.r𝐹))
62 rmodislmod.u . . 3 1 = (1r𝐹)
6362a1i 11 . 2 (𝐹 ∈ CRing → 1 = (1r𝐹))
64 crngring 20230 . 2 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
651eqcomi 2735 . . . . . 6 (Base‘𝑅) = 𝑉
6665, 17eqtri 2754 . . . . 5 (Base‘𝑅) = (Base‘𝐿)
6726, 28eqtr4i 2757 . . . . 5 (+g𝑅) = (+g𝐿)
6866, 67grpprop 18949 . . . 4 (𝑅 ∈ Grp ↔ 𝐿 ∈ Grp)
6944, 68mpbi 229 . . 3 𝐿 ∈ Grp
7069a1i 11 . 2 (𝐹 ∈ CRing → 𝐿 ∈ Grp)
7148a1i 11 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
72 oveq12 7435 . . . . . 6 ((𝑣 = 𝑏𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
7372ancoms 457 . . . . 5 ((𝑠 = 𝑎𝑣 = 𝑏) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
7473adantl 480 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
75 simp2 1134 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑎𝐾)
76 simp3 1135 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑏𝑉)
77 ovexd 7461 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ V)
7871, 74, 75, 76, 77ovmpod 7580 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
79 simpl1 1188 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 𝑟) ∈ 𝑉)
80792ralimi 3113 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
81802ralimi 3113 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
82 ringgrp 20223 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
8345grpbn0 18963 . . . . . . . . . 10 (𝐹 ∈ Grp → 𝐾 ≠ ∅)
8482, 83syl 17 . . . . . . . . 9 (𝐹 ∈ Ring → 𝐾 ≠ ∅)
85843ad2ant2 1131 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝐾 ≠ ∅)
8643, 85ax-mp 5 . . . . . . 7 𝐾 ≠ ∅
87 rspn0 4355 . . . . . . 7 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
8886, 87ax-mp 5 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
89 ralcom 3277 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
901grpbn0 18963 . . . . . . . . . . 11 (𝑅 ∈ Grp → 𝑉 ≠ ∅)
91903ad2ant1 1130 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝑉 ≠ ∅)
9243, 91ax-mp 5 . . . . . . . . 9 𝑉 ≠ ∅
93 rspn0 4355 . . . . . . . . 9 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
9492, 93ax-mp 5 . . . . . . . 8 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
95 oveq2 7434 . . . . . . . . . . 11 (𝑟 = 𝑎 → (𝑤 · 𝑟) = (𝑤 · 𝑎))
9695eleq1d 2811 . . . . . . . . . 10 (𝑟 = 𝑎 → ((𝑤 · 𝑟) ∈ 𝑉 ↔ (𝑤 · 𝑎) ∈ 𝑉))
97 oveq1 7433 . . . . . . . . . . 11 (𝑤 = 𝑏 → (𝑤 · 𝑎) = (𝑏 · 𝑎))
9897eleq1d 2811 . . . . . . . . . 10 (𝑤 = 𝑏 → ((𝑤 · 𝑎) ∈ 𝑉 ↔ (𝑏 · 𝑎) ∈ 𝑉))
9996, 98rspc2v 3619 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
100993adant1 1127 . . . . . . . 8 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
10194, 100syl5com 31 . . . . . . 7 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
10289, 101sylbi 216 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
10381, 88, 1023syl 18 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
1041033ad2ant3 1132 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
10543, 104ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉)
10678, 105eqeltrd 2826 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) ∈ 𝑉)
10748a1i 11 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
108 oveq12 7435 . . . . . . . 8 ((𝑣 = (𝑏 + 𝑐) ∧ 𝑠 = 𝑎) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
109108ancoms 457 . . . . . . 7 ((𝑠 = 𝑎𝑣 = (𝑏 + 𝑐)) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
110109adantl 480 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = (𝑏 + 𝑐))) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
111 simp1 1133 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑎𝐾)
1121, 27grpcl 18938 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
11344, 112mp3an1 1445 . . . . . . 7 ((𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
1141133adant1 1127 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
115 ovexd 7461 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) ∈ V)
116107, 110, 111, 114, 115ovmpod 7580 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 + 𝑐) · 𝑎))
117 simpl2 1189 . . . . . . . . . 10 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1181172ralimi 3113 . . . . . . . . 9 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1191182ralimi 3113 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
120 rspn0 4355 . . . . . . . . . 10 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟))))
12186, 120ax-mp 5 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
122 oveq2 7434 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 + 𝑥) · 𝑎))
123 oveq2 7434 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → (𝑥 · 𝑟) = (𝑥 · 𝑎))
12495, 123oveq12d 7444 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 · 𝑟) + (𝑥 · 𝑟)) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)))
125122, 124eqeq12d 2742 . . . . . . . . . . 11 (𝑟 = 𝑎 → (((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ↔ ((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎))))
126 oveq2 7434 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑤 + 𝑥) = (𝑤 + 𝑐))
127126oveq1d 7441 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 + 𝑥) · 𝑎) = ((𝑤 + 𝑐) · 𝑎))
128 oveq1 7433 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑥 · 𝑎) = (𝑐 · 𝑎))
129128oveq2d 7442 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 · 𝑎) + (𝑥 · 𝑎)) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)))
130127, 129eqeq12d 2742 . . . . . . . . . . 11 (𝑥 = 𝑐 → (((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)) ↔ ((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎))))
131 oveq1 7433 . . . . . . . . . . . . 13 (𝑤 = 𝑏 → (𝑤 + 𝑐) = (𝑏 + 𝑐))
132131oveq1d 7441 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 + 𝑐) · 𝑎) = ((𝑏 + 𝑐) · 𝑎))
13397oveq1d 7441 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 · 𝑎) + (𝑐 · 𝑎)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
134132, 133eqeq12d 2742 . . . . . . . . . . 11 (𝑤 = 𝑏 → (((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)) ↔ ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
135125, 130, 134rspc3v 3624 . . . . . . . . . 10 ((𝑎𝐾𝑐𝑉𝑏𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1361353com23 1123 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
137121, 136syl5com 31 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
138119, 137syl 17 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1391383ad2ant3 1132 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
14043, 139ax-mp 5 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
141116, 140eqtrd 2766 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
142141adantl 480 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
14373adantl 480 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
144 simp2 1134 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑏𝑉)
145 ovexd 7461 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 · 𝑎) ∈ V)
146107, 143, 111, 144, 145ovmpod 7580 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
147 oveq12 7435 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
148147ancoms 457 . . . . . . 7 ((𝑠 = 𝑎𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
149148adantl 480 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
150 simp3 1135 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑐𝑉)
151 ovexd 7461 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
152107, 149, 111, 150, 151ovmpod 7580 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
153146, 152oveq12d 7444 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
154153adantl 480 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
155142, 154eqtr4d 2769 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑎 𝑏) + (𝑎 𝑐)))
156 simpl3 1190 . . . . . . . . 9 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1571562ralimi 3113 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1581572ralimi 3113 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
159 ralrot3 3281 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
160 rspn0 4355 . . . . . . . . . 10 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))))
16192, 160ax-mp 5 . . . . . . . . 9 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
162 oveq1 7433 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑞 𝑟) = (𝑎 𝑟))
163162oveq2d 7442 . . . . . . . . . . 11 (𝑞 = 𝑎 → (𝑤 · (𝑞 𝑟)) = (𝑤 · (𝑎 𝑟)))
164 oveq2 7434 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑤 · 𝑞) = (𝑤 · 𝑎))
165164oveq1d 7441 . . . . . . . . . . 11 (𝑞 = 𝑎 → ((𝑤 · 𝑞) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)))
166163, 165eqeq12d 2742 . . . . . . . . . 10 (𝑞 = 𝑎 → ((𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟))))
167 oveq2 7434 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑎 𝑟) = (𝑎 𝑏))
168167oveq2d 7442 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝑤 · (𝑎 𝑟)) = (𝑤 · (𝑎 𝑏)))
169 oveq2 7434 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑤 · 𝑟) = (𝑤 · 𝑏))
170169oveq2d 7442 . . . . . . . . . . 11 (𝑟 = 𝑏 → ((𝑤 · 𝑎) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)))
171168, 170eqeq12d 2742 . . . . . . . . . 10 (𝑟 = 𝑏 → ((𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏))))
172 oveq1 7433 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝑤 · (𝑎 𝑏)) = (𝑐 · (𝑎 𝑏)))
173 oveq1 7433 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑎) = (𝑐 · 𝑎))
174 oveq1 7433 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑏) = (𝑐 · 𝑏))
175173, 174oveq12d 7444 . . . . . . . . . . 11 (𝑤 = 𝑐 → ((𝑤 · 𝑎) + (𝑤 · 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
176172, 175eqeq12d 2742 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)) ↔ (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
177166, 171, 176rspc3v 3624 . . . . . . . . 9 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
178161, 177syl5com 31 . . . . . . . 8 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
179159, 178sylbi 216 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
180158, 179syl 17 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
1811803ad2ant3 1132 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
18243, 181ax-mp 5 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
18348a1i 11 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
184 oveq12 7435 . . . . . . 7 ((𝑣 = 𝑐𝑠 = (𝑎 𝑏)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
185184ancoms 457 . . . . . 6 ((𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
186185adantl 480 . . . . 5 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
18745, 58grpcl 18938 . . . . . . . . . 10 ((𝐹 ∈ Grp ∧ 𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
1881873expib 1119 . . . . . . . . 9 (𝐹 ∈ Grp → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
18982, 188syl 17 . . . . . . . 8 (𝐹 ∈ Ring → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
1901893ad2ant2 1131 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
19143, 190ax-mp 5 . . . . . 6 ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
1921913adant3 1129 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑏) ∈ 𝐾)
193 simp3 1135 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑐𝑉)
194 ovexd 7461 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) ∈ V)
195183, 186, 192, 193, 194ovmpod 7580 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = (𝑐 · (𝑎 𝑏)))
196148adantl 480 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
197 simp1 1133 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑎𝐾)
198 ovexd 7461 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
199183, 196, 197, 193, 198ovmpod 7580 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
200 oveq12 7435 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑏) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
201200ancoms 457 . . . . . . 7 ((𝑠 = 𝑏𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
202201adantl 480 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑏𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
203 simp2 1134 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑏𝐾)
204 ovexd 7461 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ V)
205183, 202, 203, 193, 204ovmpod 7580 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑏 𝑐) = (𝑐 · 𝑏))
206199, 205oveq12d 7444 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑐) + (𝑏 𝑐)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
207182, 195, 2063eqtr4d 2776 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
208207adantl 480 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
209 rmodislmod.s . . 3 · = ( ·𝑠𝑅)
2101, 27, 209, 39, 45, 58, 60, 62, 43, 48, 14rmodislmodlem 20907 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
21148a1i 11 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
212 oveq12 7435 . . . . . 6 ((𝑣 = 𝑎𝑠 = 1 ) → (𝑣 · 𝑠) = (𝑎 · 1 ))
213212ancoms 457 . . . . 5 ((𝑠 = 1𝑣 = 𝑎) → (𝑣 · 𝑠) = (𝑎 · 1 ))
214213adantl 480 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝑉) ∧ (𝑠 = 1𝑣 = 𝑎)) → (𝑣 · 𝑠) = (𝑎 · 1 ))
21545, 62ringidcl 20247 . . . . . 6 (𝐹 ∈ Ring → 1𝐾)
21664, 215syl 17 . . . . 5 (𝐹 ∈ CRing → 1𝐾)
217216adantr 479 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 1𝐾)
218 simpr 483 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 𝑎𝑉)
219 ovexd 7461 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) ∈ V)
220211, 214, 217, 218, 219ovmpod 7580 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = (𝑎 · 1 ))
221 simprr 771 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 1 ) = 𝑤)
2222212ralimi 3113 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
2232222ralimi 3113 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
224 rspn0 4355 . . . . . . 7 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
22586, 224ax-mp 5 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
226 rspn0 4355 . . . . . . . 8 (𝐾 ≠ ∅ → (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
22786, 226ax-mp 5 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
228 rspn0 4355 . . . . . . . . 9 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑤𝑉 (𝑤 · 1 ) = 𝑤))
22992, 228ax-mp 5 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑤𝑉 (𝑤 · 1 ) = 𝑤)
230 oveq1 7433 . . . . . . . . . . 11 (𝑤 = 𝑎 → (𝑤 · 1 ) = (𝑎 · 1 ))
231 id 22 . . . . . . . . . . 11 (𝑤 = 𝑎𝑤 = 𝑎)
232230, 231eqeq12d 2742 . . . . . . . . . 10 (𝑤 = 𝑎 → ((𝑤 · 1 ) = 𝑤 ↔ (𝑎 · 1 ) = 𝑎))
233232rspcv 3604 . . . . . . . . 9 (𝑎𝑉 → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
234233adantl 480 . . . . . . . 8 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
235229, 234syl5com 31 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
236227, 235syl 17 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
237223, 225, 2363syl 18 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
2382373ad2ant3 1132 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
23943, 238ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎)
240220, 239eqtrd 2766 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = 𝑎)
24118, 30, 42, 56, 57, 59, 61, 63, 64, 70, 106, 155, 208, 210, 240islmodd 20844 1 (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  Vcvv 3462  c0 4325  cop 4639  cfv 6556  (class class class)co 7426  cmpo 7428  1c1 11161  2c2 12321  5c5 12324  6c6 12325   sSet csts 17167  ndxcnx 17197  Basecbs 17215  +gcplusg 17268  .rcmulr 17269  Scalarcsca 17271   ·𝑠 cvsca 17272  Grpcgrp 18930  1rcur 20166  Ringcrg 20218  CRingccrg 20219  LModclmod 20838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-sca 17284  df-vsca 17285  df-0g 17458  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-grp 18933  df-cmn 19782  df-mgp 20120  df-ur 20167  df-ring 20220  df-cring 20221  df-lmod 20840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator