MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmodislmodlem Structured version   Visualization version   GIF version

Theorem rmodislmodlem 20190
Description: Lemma for rmodislmod 20191. This is the part of the proof of rmodislmod 20191 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.)
Hypotheses
Ref Expression
rmodislmod.v 𝑉 = (Base‘𝑅)
rmodislmod.a + = (+g𝑅)
rmodislmod.s · = ( ·𝑠𝑅)
rmodislmod.f 𝐹 = (Scalar‘𝑅)
rmodislmod.k 𝐾 = (Base‘𝐹)
rmodislmod.p = (+g𝐹)
rmodislmod.t × = (.r𝐹)
rmodislmod.u 1 = (1r𝐹)
rmodislmod.r (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
rmodislmod.m = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
rmodislmod.l 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
Assertion
Ref Expression
rmodislmodlem ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
Distinct variable groups:   × ,𝑞,𝑟,𝑤,𝑥   × ,𝑠,𝑣   · ,𝑞,𝑟,𝑤,𝑥   · ,𝑠,𝑣   𝐾,𝑞,𝑟,𝑥   𝐾,𝑠,𝑣   𝑉,𝑞,𝑟,𝑤,𝑥   𝑉,𝑠,𝑣   𝑟,𝑎,𝑤   𝑠,𝑎,𝑣   𝑞,𝑏,𝑟,𝑤   𝑠,𝑏,𝑣   𝑠,𝑐,𝑣   𝑤,𝑐
Allowed substitution hints:   + (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝑅(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   · (𝑎,𝑏,𝑐)   × (𝑎,𝑏,𝑐)   1 (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝐹(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝐾(𝑤,𝑎,𝑏,𝑐)   𝐿(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝑉(𝑎,𝑏,𝑐)

Proof of Theorem rmodislmodlem
StepHypRef Expression
1 rmodislmod.r . . . . 5 (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
2 simprl 768 . . . . . . . . 9 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
322ralimi 3088 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
432ralimi 3088 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
5 ralrot3 3288 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
6 rmodislmod.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑅)
76grpbn0 18608 . . . . . . . . . . . . 13 (𝑅 ∈ Grp → 𝑉 ≠ ∅)
873ad2ant1 1132 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝑉 ≠ ∅)
91, 8ax-mp 5 . . . . . . . . . . 11 𝑉 ≠ ∅
10 rspn0 4286 . . . . . . . . . . 11 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟)))
119, 10ax-mp 5 . . . . . . . . . 10 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
12 oveq1 7282 . . . . . . . . . . . . . 14 (𝑞 = 𝑏 → (𝑞 × 𝑟) = (𝑏 × 𝑟))
1312oveq2d 7291 . . . . . . . . . . . . 13 (𝑞 = 𝑏 → (𝑤 · (𝑞 × 𝑟)) = (𝑤 · (𝑏 × 𝑟)))
14 oveq2 7283 . . . . . . . . . . . . . 14 (𝑞 = 𝑏 → (𝑤 · 𝑞) = (𝑤 · 𝑏))
1514oveq1d 7290 . . . . . . . . . . . . 13 (𝑞 = 𝑏 → ((𝑤 · 𝑞) · 𝑟) = ((𝑤 · 𝑏) · 𝑟))
1613, 15eqeq12d 2754 . . . . . . . . . . . 12 (𝑞 = 𝑏 → ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ↔ (𝑤 · (𝑏 × 𝑟)) = ((𝑤 · 𝑏) · 𝑟)))
17 oveq2 7283 . . . . . . . . . . . . . 14 (𝑟 = 𝑎 → (𝑏 × 𝑟) = (𝑏 × 𝑎))
1817oveq2d 7291 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → (𝑤 · (𝑏 × 𝑟)) = (𝑤 · (𝑏 × 𝑎)))
19 oveq2 7283 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → ((𝑤 · 𝑏) · 𝑟) = ((𝑤 · 𝑏) · 𝑎))
2018, 19eqeq12d 2754 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 · (𝑏 × 𝑟)) = ((𝑤 · 𝑏) · 𝑟) ↔ (𝑤 · (𝑏 × 𝑎)) = ((𝑤 · 𝑏) · 𝑎)))
21 oveq1 7282 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → (𝑤 · (𝑏 × 𝑎)) = (𝑐 · (𝑏 × 𝑎)))
22 oveq1 7282 . . . . . . . . . . . . . 14 (𝑤 = 𝑐 → (𝑤 · 𝑏) = (𝑐 · 𝑏))
2322oveq1d 7290 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → ((𝑤 · 𝑏) · 𝑎) = ((𝑐 · 𝑏) · 𝑎))
2421, 23eqeq12d 2754 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((𝑤 · (𝑏 × 𝑎)) = ((𝑤 · 𝑏) · 𝑎) ↔ (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
2516, 20, 24rspc3v 3573 . . . . . . . . . . 11 ((𝑏𝐾𝑎𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
26253com12 1122 . . . . . . . . . 10 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
2711, 26syl5com 31 . . . . . . . . 9 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
285, 27sylbi 216 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
29 eqcom 2745 . . . . . . . 8 (((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎)) ↔ (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎))
3028, 29syl6ibr 251 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎))))
314, 30syl 17 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎))))
32313ad2ant3 1134 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎))))
331, 32ax-mp 5 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎)))
3433adantl 482 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎)))
35 rmodislmod.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
36 rmodislmod.t . . . . . . . . . 10 × = (.r𝐹)
3735, 36crngcom 19801 . . . . . . . . 9 ((𝐹 ∈ CRing ∧ 𝑏𝐾𝑎𝐾) → (𝑏 × 𝑎) = (𝑎 × 𝑏))
38373expb 1119 . . . . . . . 8 ((𝐹 ∈ CRing ∧ (𝑏𝐾𝑎𝐾)) → (𝑏 × 𝑎) = (𝑎 × 𝑏))
3938expcom 414 . . . . . . 7 ((𝑏𝐾𝑎𝐾) → (𝐹 ∈ CRing → (𝑏 × 𝑎) = (𝑎 × 𝑏)))
4039ancoms 459 . . . . . 6 ((𝑎𝐾𝑏𝐾) → (𝐹 ∈ CRing → (𝑏 × 𝑎) = (𝑎 × 𝑏)))
41403adant3 1131 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝐹 ∈ CRing → (𝑏 × 𝑎) = (𝑎 × 𝑏)))
4241impcom 408 . . . 4 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → (𝑏 × 𝑎) = (𝑎 × 𝑏))
4342oveq2d 7291 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → (𝑐 · (𝑏 × 𝑎)) = (𝑐 · (𝑎 × 𝑏)))
4434, 43eqtrd 2778 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑎 × 𝑏)))
45 rmodislmod.m . . . . . . 7 = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
4645a1i 11 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
47 oveq12 7284 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑏) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
4847ancoms 459 . . . . . . 7 ((𝑠 = 𝑏𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
4948adantl 482 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑏𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
50 simp2 1136 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑏𝐾)
51 simp3 1137 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑐𝑉)
52 ovexd 7310 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ V)
5346, 49, 50, 51, 52ovmpod 7425 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑏 𝑐) = (𝑐 · 𝑏))
5453oveq2d 7291 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 (𝑏 𝑐)) = (𝑎 (𝑐 · 𝑏)))
55 oveq12 7284 . . . . . . 7 ((𝑣 = (𝑐 · 𝑏) ∧ 𝑠 = 𝑎) → (𝑣 · 𝑠) = ((𝑐 · 𝑏) · 𝑎))
5655ancoms 459 . . . . . 6 ((𝑠 = 𝑎𝑣 = (𝑐 · 𝑏)) → (𝑣 · 𝑠) = ((𝑐 · 𝑏) · 𝑎))
5756adantl 482 . . . . 5 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = (𝑐 · 𝑏))) → (𝑣 · 𝑠) = ((𝑐 · 𝑏) · 𝑎))
58 simp1 1135 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑎𝐾)
59 simpl1 1190 . . . . . . . . . . 11 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 𝑟) ∈ 𝑉)
60592ralimi 3088 . . . . . . . . . 10 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
61602ralimi 3088 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
62 ringgrp 19788 . . . . . . . . . . . . 13 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
6335grpbn0 18608 . . . . . . . . . . . . 13 (𝐹 ∈ Grp → 𝐾 ≠ ∅)
6462, 63syl 17 . . . . . . . . . . . 12 (𝐹 ∈ Ring → 𝐾 ≠ ∅)
65643ad2ant2 1133 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝐾 ≠ ∅)
661, 65ax-mp 5 . . . . . . . . . 10 𝐾 ≠ ∅
67 rspn0 4286 . . . . . . . . . 10 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
6866, 67ax-mp 5 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
69 ralcom 3166 . . . . . . . . . 10 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
70 rspn0 4286 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
719, 70ax-mp 5 . . . . . . . . . . 11 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
72 oveq2 7283 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → (𝑤 · 𝑟) = (𝑤 · 𝑏))
7372eleq1d 2823 . . . . . . . . . . . 12 (𝑟 = 𝑏 → ((𝑤 · 𝑟) ∈ 𝑉 ↔ (𝑤 · 𝑏) ∈ 𝑉))
7422eleq1d 2823 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((𝑤 · 𝑏) ∈ 𝑉 ↔ (𝑐 · 𝑏) ∈ 𝑉))
7573, 74rspc2v 3570 . . . . . . . . . . 11 ((𝑏𝐾𝑐𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑐 · 𝑏) ∈ 𝑉))
7671, 75syl5com 31 . . . . . . . . . 10 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
7769, 76sylbi 216 . . . . . . . . 9 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
7861, 68, 773syl 18 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
79783ad2ant3 1134 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
801, 79ax-mp 5 . . . . . 6 ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉)
81803adant1 1129 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉)
82 ovexd 7310 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) ∈ V)
8346, 57, 58, 81, 82ovmpod 7425 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 (𝑐 · 𝑏)) = ((𝑐 · 𝑏) · 𝑎))
8454, 83eqtrd 2778 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 (𝑏 𝑐)) = ((𝑐 · 𝑏) · 𝑎))
8584adantl 482 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → (𝑎 (𝑏 𝑐)) = ((𝑐 · 𝑏) · 𝑎))
86 oveq12 7284 . . . . . 6 ((𝑣 = 𝑐𝑠 = (𝑎 × 𝑏)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 × 𝑏)))
8786ancoms 459 . . . . 5 ((𝑠 = (𝑎 × 𝑏) ∧ 𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · (𝑎 × 𝑏)))
8887adantl 482 . . . 4 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = (𝑎 × 𝑏) ∧ 𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 × 𝑏)))
8935, 36ringcl 19800 . . . . . . . 8 ((𝐹 ∈ Ring ∧ 𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾)
90893expib 1121 . . . . . . 7 (𝐹 ∈ Ring → ((𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾))
91903ad2ant2 1133 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾))
921, 91ax-mp 5 . . . . 5 ((𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾)
93923adant3 1131 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 × 𝑏) ∈ 𝐾)
94 ovexd 7310 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 × 𝑏)) ∈ V)
9546, 88, 93, 51, 94ovmpod 7425 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 × 𝑏) 𝑐) = (𝑐 · (𝑎 × 𝑏)))
9695adantl 482 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑐 · (𝑎 × 𝑏)))
9744, 85, 963eqtr4rd 2789 1 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  c0 4256  cop 4567  cfv 6433  (class class class)co 7275  cmpo 7277   sSet csts 16864  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Grpcgrp 18577  1rcur 19737  Ringcrg 19783  CRingccrg 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-cmn 19388  df-mgp 19721  df-ring 19785  df-cring 19786
This theorem is referenced by:  rmodislmod  20191  rmodislmodOLD  20192
  Copyright terms: Public domain W3C validator