MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmodislmodlem Structured version   Visualization version   GIF version

Theorem rmodislmodlem 19769
Description: Lemma for rmodislmod 19770. This is the part of the proof of rmodislmod 19770 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.)
Hypotheses
Ref Expression
rmodislmod.v 𝑉 = (Base‘𝑅)
rmodislmod.a + = (+g𝑅)
rmodislmod.s · = ( ·𝑠𝑅)
rmodislmod.f 𝐹 = (Scalar‘𝑅)
rmodislmod.k 𝐾 = (Base‘𝐹)
rmodislmod.p = (+g𝐹)
rmodislmod.t × = (.r𝐹)
rmodislmod.u 1 = (1r𝐹)
rmodislmod.r (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
rmodislmod.m = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
rmodislmod.l 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
Assertion
Ref Expression
rmodislmodlem ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
Distinct variable groups:   × ,𝑞,𝑟,𝑤,𝑥   × ,𝑠,𝑣   · ,𝑞,𝑟,𝑤,𝑥   · ,𝑠,𝑣   𝐾,𝑞,𝑟,𝑥   𝐾,𝑠,𝑣   𝑉,𝑞,𝑟,𝑤,𝑥   𝑉,𝑠,𝑣   𝑟,𝑎,𝑤   𝑠,𝑎,𝑣   𝑞,𝑏,𝑟,𝑤   𝑠,𝑏,𝑣   𝑠,𝑐,𝑣   𝑤,𝑐
Allowed substitution hints:   + (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝑅(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   · (𝑎,𝑏,𝑐)   × (𝑎,𝑏,𝑐)   1 (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝐹(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝐾(𝑤,𝑎,𝑏,𝑐)   𝐿(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞,𝑎,𝑏,𝑐)   𝑉(𝑎,𝑏,𝑐)

Proof of Theorem rmodislmodlem
StepHypRef Expression
1 rmodislmod.r . . . . 5 (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
2 simprl 770 . . . . . . . . 9 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
322ralimi 3093 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
432ralimi 3093 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
5 ralrot3 3279 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
6 rmodislmod.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑅)
76grpbn0 18199 . . . . . . . . . . . . 13 (𝑅 ∈ Grp → 𝑉 ≠ ∅)
873ad2ant1 1130 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝑉 ≠ ∅)
91, 8ax-mp 5 . . . . . . . . . . 11 𝑉 ≠ ∅
10 rspn0 4251 . . . . . . . . . . 11 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟)))
119, 10ax-mp 5 . . . . . . . . . 10 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟))
12 oveq1 7157 . . . . . . . . . . . . . 14 (𝑞 = 𝑏 → (𝑞 × 𝑟) = (𝑏 × 𝑟))
1312oveq2d 7166 . . . . . . . . . . . . 13 (𝑞 = 𝑏 → (𝑤 · (𝑞 × 𝑟)) = (𝑤 · (𝑏 × 𝑟)))
14 oveq2 7158 . . . . . . . . . . . . . 14 (𝑞 = 𝑏 → (𝑤 · 𝑞) = (𝑤 · 𝑏))
1514oveq1d 7165 . . . . . . . . . . . . 13 (𝑞 = 𝑏 → ((𝑤 · 𝑞) · 𝑟) = ((𝑤 · 𝑏) · 𝑟))
1613, 15eqeq12d 2774 . . . . . . . . . . . 12 (𝑞 = 𝑏 → ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ↔ (𝑤 · (𝑏 × 𝑟)) = ((𝑤 · 𝑏) · 𝑟)))
17 oveq2 7158 . . . . . . . . . . . . . 14 (𝑟 = 𝑎 → (𝑏 × 𝑟) = (𝑏 × 𝑎))
1817oveq2d 7166 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → (𝑤 · (𝑏 × 𝑟)) = (𝑤 · (𝑏 × 𝑎)))
19 oveq2 7158 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → ((𝑤 · 𝑏) · 𝑟) = ((𝑤 · 𝑏) · 𝑎))
2018, 19eqeq12d 2774 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 · (𝑏 × 𝑟)) = ((𝑤 · 𝑏) · 𝑟) ↔ (𝑤 · (𝑏 × 𝑎)) = ((𝑤 · 𝑏) · 𝑎)))
21 oveq1 7157 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → (𝑤 · (𝑏 × 𝑎)) = (𝑐 · (𝑏 × 𝑎)))
22 oveq1 7157 . . . . . . . . . . . . . 14 (𝑤 = 𝑐 → (𝑤 · 𝑏) = (𝑐 · 𝑏))
2322oveq1d 7165 . . . . . . . . . . . . 13 (𝑤 = 𝑐 → ((𝑤 · 𝑏) · 𝑎) = ((𝑐 · 𝑏) · 𝑎))
2421, 23eqeq12d 2774 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((𝑤 · (𝑏 × 𝑎)) = ((𝑤 · 𝑏) · 𝑎) ↔ (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
2516, 20, 24rspc3v 3554 . . . . . . . . . . 11 ((𝑏𝐾𝑎𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
26253com12 1120 . . . . . . . . . 10 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
2711, 26syl5com 31 . . . . . . . . 9 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
285, 27sylbi 220 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎)))
29 eqcom 2765 . . . . . . . 8 (((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎)) ↔ (𝑐 · (𝑏 × 𝑎)) = ((𝑐 · 𝑏) · 𝑎))
3028, 29syl6ibr 255 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎))))
314, 30syl 17 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎))))
32313ad2ant3 1132 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎))))
331, 32ax-mp 5 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎)))
3433adantl 485 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑏 × 𝑎)))
35 rmodislmod.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
36 rmodislmod.t . . . . . . . . . 10 × = (.r𝐹)
3735, 36crngcom 19383 . . . . . . . . 9 ((𝐹 ∈ CRing ∧ 𝑏𝐾𝑎𝐾) → (𝑏 × 𝑎) = (𝑎 × 𝑏))
38373expb 1117 . . . . . . . 8 ((𝐹 ∈ CRing ∧ (𝑏𝐾𝑎𝐾)) → (𝑏 × 𝑎) = (𝑎 × 𝑏))
3938expcom 417 . . . . . . 7 ((𝑏𝐾𝑎𝐾) → (𝐹 ∈ CRing → (𝑏 × 𝑎) = (𝑎 × 𝑏)))
4039ancoms 462 . . . . . 6 ((𝑎𝐾𝑏𝐾) → (𝐹 ∈ CRing → (𝑏 × 𝑎) = (𝑎 × 𝑏)))
41403adant3 1129 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝐹 ∈ CRing → (𝑏 × 𝑎) = (𝑎 × 𝑏)))
4241impcom 411 . . . 4 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → (𝑏 × 𝑎) = (𝑎 × 𝑏))
4342oveq2d 7166 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → (𝑐 · (𝑏 × 𝑎)) = (𝑐 · (𝑎 × 𝑏)))
4434, 43eqtrd 2793 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑐 · 𝑏) · 𝑎) = (𝑐 · (𝑎 × 𝑏)))
45 rmodislmod.m . . . . . . 7 = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
4645a1i 11 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
47 oveq12 7159 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑏) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
4847ancoms 462 . . . . . . 7 ((𝑠 = 𝑏𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
4948adantl 485 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑏𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
50 simp2 1134 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑏𝐾)
51 simp3 1135 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑐𝑉)
52 ovexd 7185 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ V)
5346, 49, 50, 51, 52ovmpod 7297 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑏 𝑐) = (𝑐 · 𝑏))
5453oveq2d 7166 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 (𝑏 𝑐)) = (𝑎 (𝑐 · 𝑏)))
55 oveq12 7159 . . . . . . 7 ((𝑣 = (𝑐 · 𝑏) ∧ 𝑠 = 𝑎) → (𝑣 · 𝑠) = ((𝑐 · 𝑏) · 𝑎))
5655ancoms 462 . . . . . 6 ((𝑠 = 𝑎𝑣 = (𝑐 · 𝑏)) → (𝑣 · 𝑠) = ((𝑐 · 𝑏) · 𝑎))
5756adantl 485 . . . . 5 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = (𝑐 · 𝑏))) → (𝑣 · 𝑠) = ((𝑐 · 𝑏) · 𝑎))
58 simp1 1133 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑎𝐾)
59 simpl1 1188 . . . . . . . . . . 11 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 𝑟) ∈ 𝑉)
60592ralimi 3093 . . . . . . . . . 10 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
61602ralimi 3093 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
62 ringgrp 19370 . . . . . . . . . . . . 13 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
6335grpbn0 18199 . . . . . . . . . . . . 13 (𝐹 ∈ Grp → 𝐾 ≠ ∅)
6462, 63syl 17 . . . . . . . . . . . 12 (𝐹 ∈ Ring → 𝐾 ≠ ∅)
65643ad2ant2 1131 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝐾 ≠ ∅)
661, 65ax-mp 5 . . . . . . . . . 10 𝐾 ≠ ∅
67 rspn0 4251 . . . . . . . . . 10 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
6866, 67ax-mp 5 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
69 ralcom 3272 . . . . . . . . . 10 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
70 rspn0 4251 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
719, 70ax-mp 5 . . . . . . . . . . 11 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
72 oveq2 7158 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → (𝑤 · 𝑟) = (𝑤 · 𝑏))
7372eleq1d 2836 . . . . . . . . . . . 12 (𝑟 = 𝑏 → ((𝑤 · 𝑟) ∈ 𝑉 ↔ (𝑤 · 𝑏) ∈ 𝑉))
7422eleq1d 2836 . . . . . . . . . . . 12 (𝑤 = 𝑐 → ((𝑤 · 𝑏) ∈ 𝑉 ↔ (𝑐 · 𝑏) ∈ 𝑉))
7573, 74rspc2v 3551 . . . . . . . . . . 11 ((𝑏𝐾𝑐𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑐 · 𝑏) ∈ 𝑉))
7671, 75syl5com 31 . . . . . . . . . 10 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
7769, 76sylbi 220 . . . . . . . . 9 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
7861, 68, 773syl 18 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
79783ad2ant3 1132 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉))
801, 79ax-mp 5 . . . . . 6 ((𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉)
81803adant1 1127 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ 𝑉)
82 ovexd 7185 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑐 · 𝑏) · 𝑎) ∈ V)
8346, 57, 58, 81, 82ovmpod 7297 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 (𝑐 · 𝑏)) = ((𝑐 · 𝑏) · 𝑎))
8454, 83eqtrd 2793 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 (𝑏 𝑐)) = ((𝑐 · 𝑏) · 𝑎))
8584adantl 485 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → (𝑎 (𝑏 𝑐)) = ((𝑐 · 𝑏) · 𝑎))
86 oveq12 7159 . . . . . 6 ((𝑣 = 𝑐𝑠 = (𝑎 × 𝑏)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 × 𝑏)))
8786ancoms 462 . . . . 5 ((𝑠 = (𝑎 × 𝑏) ∧ 𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · (𝑎 × 𝑏)))
8887adantl 485 . . . 4 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = (𝑎 × 𝑏) ∧ 𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 × 𝑏)))
8935, 36ringcl 19382 . . . . . . . 8 ((𝐹 ∈ Ring ∧ 𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾)
90893expib 1119 . . . . . . 7 (𝐹 ∈ Ring → ((𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾))
91903ad2ant2 1131 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾))
921, 91ax-mp 5 . . . . 5 ((𝑎𝐾𝑏𝐾) → (𝑎 × 𝑏) ∈ 𝐾)
93923adant3 1129 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 × 𝑏) ∈ 𝐾)
94 ovexd 7185 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 × 𝑏)) ∈ V)
9546, 88, 93, 51, 94ovmpod 7297 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 × 𝑏) 𝑐) = (𝑐 · (𝑎 × 𝑏)))
9695adantl 485 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑐 · (𝑎 × 𝑏)))
9744, 85, 963eqtr4rd 2804 1 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  Vcvv 3409  c0 4225  cop 4528  cfv 6335  (class class class)co 7150  cmpo 7152  ndxcnx 16538   sSet csts 16539  Basecbs 16541  +gcplusg 16623  .rcmulr 16624  Scalarcsca 16626   ·𝑠 cvsca 16627  Grpcgrp 18169  1rcur 19319  Ringcrg 19365  CRingccrg 19366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-plusg 16636  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-cmn 18975  df-mgp 19308  df-ring 19367  df-cring 19368
This theorem is referenced by:  rmodislmod  19770
  Copyright terms: Public domain W3C validator