Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneixb Structured version   Visualization version   GIF version

Theorem ntrneixb 40798
Description: The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneixb (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneixb
StepHypRef Expression
1 eqss 3930 . . . . . . . 8 (((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵 ↔ (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡))))
21a1i 11 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵 ↔ (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)))))
3 ntrnei.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
4 ntrnei.f . . . . . . . . . . . . . 14 𝐹 = (𝒫 𝐵𝑂𝐵)
5 ntrnei.r . . . . . . . . . . . . . 14 (𝜑𝐼𝐹𝑁)
63, 4, 5ntrneiiex 40779 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
7 elmapi 8411 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
86, 7syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
98ffvelrnda 6828 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
109elpwid 4508 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
1110adantr 484 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
128ffvelrnda 6828 . . . . . . . . . . 11 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ∈ 𝒫 𝐵)
1312elpwid 4508 . . . . . . . . . 10 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ⊆ 𝐵)
1413adantlr 714 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ⊆ 𝐵)
1511, 14unssd 4113 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵)
1615biantrurd 536 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)))))
17 dfss3 3903 . . . . . . . . 9 (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))
18 elun 4076 . . . . . . . . . 10 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
1918ralbii 3133 . . . . . . . . 9 (∀𝑥𝐵 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
2017, 19bitri 278 . . . . . . . 8 (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
2120a1i 11 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))))
222, 16, 213bitr2d 310 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵 ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))))
2322imbi2d 344 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ((𝑠𝑡) = 𝐵 → ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))))
24 r19.21v 3142 . . . . . 6 (∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = 𝐵 → ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))))
2524a1i 11 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = 𝐵 → ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))))
265ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
27 simpr 488 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
28 simpllr 775 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
293, 4, 26, 27, 28ntrneiel 40784 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
30 simplr 768 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
313, 4, 26, 27, 30ntrneiel 40784 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
3229, 31orbi12d 916 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
3332imbi2d 344 . . . . . 6 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3433ralbidva 3161 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3523, 25, 343bitr2d 310 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3635ralbidva 3161 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3736ralbidva 3161 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
38 ralrot3 3314 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
3937, 38syl6bb 290 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  cun 3879  wss 3881  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator