Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneixb Structured version   Visualization version   GIF version

Theorem ntrneixb 41199
 Description: The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneixb (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneixb
StepHypRef Expression
1 eqss 3909 . . . . . . . 8 (((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵 ↔ (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡))))
21a1i 11 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵 ↔ (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)))))
3 ntrnei.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
4 ntrnei.f . . . . . . . . . . . . . 14 𝐹 = (𝒫 𝐵𝑂𝐵)
5 ntrnei.r . . . . . . . . . . . . . 14 (𝜑𝐼𝐹𝑁)
63, 4, 5ntrneiiex 41180 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
7 elmapi 8443 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
86, 7syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
98ffvelrnda 6847 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
109elpwid 4508 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
1110adantr 484 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
128ffvelrnda 6847 . . . . . . . . . . 11 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ∈ 𝒫 𝐵)
1312elpwid 4508 . . . . . . . . . 10 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ⊆ 𝐵)
1413adantlr 714 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ⊆ 𝐵)
1511, 14unssd 4093 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵)
1615biantrurd 536 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)))))
17 dfss3 3882 . . . . . . . . 9 (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))
18 elun 4056 . . . . . . . . . 10 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
1918ralbii 3097 . . . . . . . . 9 (∀𝑥𝐵 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
2017, 19bitri 278 . . . . . . . 8 (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
2120a1i 11 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))))
222, 16, 213bitr2d 310 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵 ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))))
2322imbi2d 344 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ((𝑠𝑡) = 𝐵 → ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))))
24 r19.21v 3106 . . . . . 6 (∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = 𝐵 → ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))))
2524a1i 11 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = 𝐵 → ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))))
265ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
27 simpr 488 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
28 simpllr 775 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
293, 4, 26, 27, 28ntrneiel 41185 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
30 simplr 768 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
313, 4, 26, 27, 30ntrneiel 41185 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
3229, 31orbi12d 916 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
3332imbi2d 344 . . . . . 6 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3433ralbidva 3125 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡))) ↔ ∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3523, 25, 343bitr2d 310 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3635ralbidva 3125 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3736ralbidva 3125 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
38 ralrot3 3279 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
3937, 38bitrdi 290 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  ∀wral 3070  {crab 3074  Vcvv 3409   ∪ cun 3858   ⊆ wss 3860  𝒫 cpw 4497   class class class wbr 5035   ↦ cmpt 5115  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155   ∈ cmpo 7157   ↑m cmap 8421 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-map 8423 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator