Proof of Theorem ntrneixb
Step | Hyp | Ref
| Expression |
1 | | eqss 3932 |
. . . . . . . 8
⊢ (((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵 ↔ (((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ⊆ 𝐵 ∧ 𝐵 ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)))) |
2 | 1 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵 ↔ (((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ⊆ 𝐵 ∧ 𝐵 ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡))))) |
3 | | ntrnei.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
4 | | ntrnei.f |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
5 | | ntrnei.r |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼𝐹𝑁) |
6 | 3, 4, 5 | ntrneiiex 41575 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
7 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
9 | 8 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4541 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ⊆ 𝐵) |
11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ⊆ 𝐵) |
12 | 8 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘𝑡) ∈ 𝒫 𝐵) |
13 | 12 | elpwid 4541 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘𝑡) ⊆ 𝐵) |
14 | 13 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘𝑡) ⊆ 𝐵) |
15 | 11, 14 | unssd 4116 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ⊆ 𝐵) |
16 | 15 | biantrurd 532 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ (((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ⊆ 𝐵 ∧ 𝐵 ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡))))) |
17 | | dfss3 3905 |
. . . . . . . . 9
⊢ (𝐵 ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ ((𝐼‘𝑠) ∪ (𝐼‘𝑡))) |
18 | | elun 4079 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))) |
19 | 18 | ralbii 3090 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐵 𝑥 ∈ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))) |
20 | 17, 19 | bitri 274 |
. . . . . . . 8
⊢ (𝐵 ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))) |
21 | 20 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡)))) |
22 | 2, 16, 21 | 3bitr2d 306 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡)))) |
23 | 22 | imbi2d 340 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))))) |
24 | | r19.21v 3100 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡)))) |
25 | 24 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ 𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))))) |
26 | 5 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
27 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
28 | | simpllr 772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
29 | 3, 4, 26, 27, 28 | ntrneiel 41580 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑥))) |
30 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑡 ∈ 𝒫 𝐵) |
31 | 3, 4, 26, 27, 30 | ntrneiel 41580 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑡) ↔ 𝑡 ∈ (𝑁‘𝑥))) |
32 | 29, 31 | orbi12d 915 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡)) ↔ (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥)))) |
33 | 32 | imbi2d 340 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (((𝑠 ∪ 𝑡) = 𝐵 → (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) |
34 | 33 | ralbidva 3119 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ 𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑥 ∈ (𝐼‘𝑠) ∨ 𝑥 ∈ (𝐼‘𝑡))) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) |
35 | 23, 25, 34 | 3bitr2d 306 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) |
36 | 35 | ralbidva 3119 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ∀𝑡 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) |
37 | 36 | ralbidva 3119 |
. 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) |
38 | | ralrot3 3286 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥)))) |
39 | 37, 38 | bitrdi 286 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) |