MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsprop Structured version   Visualization version   GIF version

Theorem negsprop 27998
Description: Show closure and ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
negsprop ((𝐴 No 𝐵 No ) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴))))

Proof of Theorem negsprop
Dummy variables 𝑎 𝑏 𝑝 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayelon 27745 . . . 4 ( bday 𝐴) ∈ On
2 bdayelon 27745 . . . 4 ( bday 𝐵) ∈ On
31, 2onun2i 6481 . . 3 (( bday 𝐴) ∪ ( bday 𝐵)) ∈ On
4 risset 3221 . . 3 ((( bday 𝐴) ∪ ( bday 𝐵)) ∈ On ↔ ∃𝑎 ∈ On 𝑎 = (( bday 𝐴) ∪ ( bday 𝐵)))
53, 4mpbi 230 . 2 𝑎 ∈ On 𝑎 = (( bday 𝐴) ∪ ( bday 𝐵))
6 eqeq1 2740 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) ↔ 𝑏 = (( bday 𝑝) ∪ ( bday 𝑞))))
76imbi1d 341 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))) ↔ (𝑏 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))))))
872ralbidv 3209 . . . . . . 7 (𝑎 = 𝑏 → (∀𝑝 No 𝑞 No (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))) ↔ ∀𝑝 No 𝑞 No (𝑏 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))))))
9 fveq2 6881 . . . . . . . . . . 11 (𝑝 = 𝑥 → ( bday 𝑝) = ( bday 𝑥))
109uneq1d 4147 . . . . . . . . . 10 (𝑝 = 𝑥 → (( bday 𝑝) ∪ ( bday 𝑞)) = (( bday 𝑥) ∪ ( bday 𝑞)))
1110eqeq2d 2747 . . . . . . . . 9 (𝑝 = 𝑥 → (𝑏 = (( bday 𝑝) ∪ ( bday 𝑞)) ↔ 𝑏 = (( bday 𝑥) ∪ ( bday 𝑞))))
12 fveq2 6881 . . . . . . . . . . 11 (𝑝 = 𝑥 → ( -us𝑝) = ( -us𝑥))
1312eleq1d 2820 . . . . . . . . . 10 (𝑝 = 𝑥 → (( -us𝑝) ∈ No ↔ ( -us𝑥) ∈ No ))
14 breq1 5127 . . . . . . . . . . 11 (𝑝 = 𝑥 → (𝑝 <s 𝑞𝑥 <s 𝑞))
1512breq2d 5136 . . . . . . . . . . 11 (𝑝 = 𝑥 → (( -us𝑞) <s ( -us𝑝) ↔ ( -us𝑞) <s ( -us𝑥)))
1614, 15imbi12d 344 . . . . . . . . . 10 (𝑝 = 𝑥 → ((𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)) ↔ (𝑥 <s 𝑞 → ( -us𝑞) <s ( -us𝑥))))
1713, 16anbi12d 632 . . . . . . . . 9 (𝑝 = 𝑥 → ((( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))) ↔ (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑞 → ( -us𝑞) <s ( -us𝑥)))))
1811, 17imbi12d 344 . . . . . . . 8 (𝑝 = 𝑥 → ((𝑏 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))) ↔ (𝑏 = (( bday 𝑥) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑞 → ( -us𝑞) <s ( -us𝑥))))))
19 fveq2 6881 . . . . . . . . . . 11 (𝑞 = 𝑦 → ( bday 𝑞) = ( bday 𝑦))
2019uneq2d 4148 . . . . . . . . . 10 (𝑞 = 𝑦 → (( bday 𝑥) ∪ ( bday 𝑞)) = (( bday 𝑥) ∪ ( bday 𝑦)))
2120eqeq2d 2747 . . . . . . . . 9 (𝑞 = 𝑦 → (𝑏 = (( bday 𝑥) ∪ ( bday 𝑞)) ↔ 𝑏 = (( bday 𝑥) ∪ ( bday 𝑦))))
22 breq2 5128 . . . . . . . . . . 11 (𝑞 = 𝑦 → (𝑥 <s 𝑞𝑥 <s 𝑦))
23 fveq2 6881 . . . . . . . . . . . 12 (𝑞 = 𝑦 → ( -us𝑞) = ( -us𝑦))
2423breq1d 5134 . . . . . . . . . . 11 (𝑞 = 𝑦 → (( -us𝑞) <s ( -us𝑥) ↔ ( -us𝑦) <s ( -us𝑥)))
2522, 24imbi12d 344 . . . . . . . . . 10 (𝑞 = 𝑦 → ((𝑥 <s 𝑞 → ( -us𝑞) <s ( -us𝑥)) ↔ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))
2625anbi2d 630 . . . . . . . . 9 (𝑞 = 𝑦 → ((( -us𝑥) ∈ No ∧ (𝑥 <s 𝑞 → ( -us𝑞) <s ( -us𝑥))) ↔ (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
2721, 26imbi12d 344 . . . . . . . 8 (𝑞 = 𝑦 → ((𝑏 = (( bday 𝑥) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑞 → ( -us𝑞) <s ( -us𝑥)))) ↔ (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))))
2818, 27cbvral2vw 3228 . . . . . . 7 (∀𝑝 No 𝑞 No (𝑏 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))) ↔ ∀𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
298, 28bitrdi 287 . . . . . 6 (𝑎 = 𝑏 → (∀𝑝 No 𝑞 No (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))) ↔ ∀𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))))
30 raleq 3306 . . . . . . . . . . 11 (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (∀𝑏𝑎𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))∀𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))))
31 ralrot3 3278 . . . . . . . . . . . 12 (∀𝑥 No 𝑦 No 𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))(𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))∀𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
32 r19.23v 3169 . . . . . . . . . . . . . 14 (∀𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))(𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ (∃𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
33 risset 3221 . . . . . . . . . . . . . . 15 ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) ↔ ∃𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)))
3433imbi1i 349 . . . . . . . . . . . . . 14 (((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ (∃𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
3532, 34bitr4i 278 . . . . . . . . . . . . 13 (∀𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))(𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
36352ralbii 3116 . . . . . . . . . . . 12 (∀𝑥 No 𝑦 No 𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))(𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
3731, 36bitr3i 277 . . . . . . . . . . 11 (∀𝑏 ∈ (( bday 𝑝) ∪ ( bday 𝑞))∀𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
3830, 37bitrdi 287 . . . . . . . . . 10 (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (∀𝑏𝑎𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))))
39 simpr 484 . . . . . . . . . . . . . 14 (((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
40 simpll 766 . . . . . . . . . . . . . 14 (((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) → 𝑝 No )
4139, 40negsproplem3 27993 . . . . . . . . . . . . 13 (((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) → (( -us𝑝) ∈ No ∧ ( -us “ ( R ‘𝑝)) <<s {( -us𝑝)} ∧ {( -us𝑝)} <<s ( -us “ ( L ‘𝑝))))
4241simp1d 1142 . . . . . . . . . . . 12 (((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) → ( -us𝑝) ∈ No )
43 simplr 768 . . . . . . . . . . . . . 14 ((((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) ∧ 𝑝 <s 𝑞) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
44 simplll 774 . . . . . . . . . . . . . 14 ((((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) ∧ 𝑝 <s 𝑞) → 𝑝 No )
45 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) ∧ 𝑝 <s 𝑞) → 𝑞 No )
46 simpr 484 . . . . . . . . . . . . . 14 ((((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) ∧ 𝑝 <s 𝑞) → 𝑝 <s 𝑞)
4743, 44, 45, 46negsproplem7 27997 . . . . . . . . . . . . 13 ((((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) ∧ 𝑝 <s 𝑞) → ( -us𝑞) <s ( -us𝑝))
4847ex 412 . . . . . . . . . . . 12 (((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) → (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))
4942, 48jca 511 . . . . . . . . . . 11 (((𝑝 No 𝑞 No ) ∧ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥))))) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))))
5049expcom 413 . . . . . . . . . 10 (∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) → ((𝑝 No 𝑞 No ) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))))
5138, 50biimtrdi 253 . . . . . . . . 9 (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (∀𝑏𝑎𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) → ((𝑝 No 𝑞 No ) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))))))
5251com3l 89 . . . . . . . 8 (∀𝑏𝑎𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) → ((𝑝 No 𝑞 No ) → (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))))))
5352ralrimivv 3186 . . . . . . 7 (∀𝑏𝑎𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) → ∀𝑝 No 𝑞 No (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))))
5453a1i 11 . . . . . 6 (𝑎 ∈ On → (∀𝑏𝑎𝑥 No 𝑦 No (𝑏 = (( bday 𝑥) ∪ ( bday 𝑦)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) → ∀𝑝 No 𝑞 No (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))))))
5529, 54tfis2 7857 . . . . 5 (𝑎 ∈ On → ∀𝑝 No 𝑞 No (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))))
56 fveq2 6881 . . . . . . . . 9 (𝑝 = 𝐴 → ( bday 𝑝) = ( bday 𝐴))
5756uneq1d 4147 . . . . . . . 8 (𝑝 = 𝐴 → (( bday 𝑝) ∪ ( bday 𝑞)) = (( bday 𝐴) ∪ ( bday 𝑞)))
5857eqeq2d 2747 . . . . . . 7 (𝑝 = 𝐴 → (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) ↔ 𝑎 = (( bday 𝐴) ∪ ( bday 𝑞))))
59 fveq2 6881 . . . . . . . . 9 (𝑝 = 𝐴 → ( -us𝑝) = ( -us𝐴))
6059eleq1d 2820 . . . . . . . 8 (𝑝 = 𝐴 → (( -us𝑝) ∈ No ↔ ( -us𝐴) ∈ No ))
61 breq1 5127 . . . . . . . . 9 (𝑝 = 𝐴 → (𝑝 <s 𝑞𝐴 <s 𝑞))
6259breq2d 5136 . . . . . . . . 9 (𝑝 = 𝐴 → (( -us𝑞) <s ( -us𝑝) ↔ ( -us𝑞) <s ( -us𝐴)))
6361, 62imbi12d 344 . . . . . . . 8 (𝑝 = 𝐴 → ((𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)) ↔ (𝐴 <s 𝑞 → ( -us𝑞) <s ( -us𝐴))))
6460, 63anbi12d 632 . . . . . . 7 (𝑝 = 𝐴 → ((( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝))) ↔ (( -us𝐴) ∈ No ∧ (𝐴 <s 𝑞 → ( -us𝑞) <s ( -us𝐴)))))
6558, 64imbi12d 344 . . . . . 6 (𝑝 = 𝐴 → ((𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))) ↔ (𝑎 = (( bday 𝐴) ∪ ( bday 𝑞)) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝑞 → ( -us𝑞) <s ( -us𝐴))))))
66 fveq2 6881 . . . . . . . . 9 (𝑞 = 𝐵 → ( bday 𝑞) = ( bday 𝐵))
6766uneq2d 4148 . . . . . . . 8 (𝑞 = 𝐵 → (( bday 𝐴) ∪ ( bday 𝑞)) = (( bday 𝐴) ∪ ( bday 𝐵)))
6867eqeq2d 2747 . . . . . . 7 (𝑞 = 𝐵 → (𝑎 = (( bday 𝐴) ∪ ( bday 𝑞)) ↔ 𝑎 = (( bday 𝐴) ∪ ( bday 𝐵))))
69 breq2 5128 . . . . . . . . 9 (𝑞 = 𝐵 → (𝐴 <s 𝑞𝐴 <s 𝐵))
70 fveq2 6881 . . . . . . . . . 10 (𝑞 = 𝐵 → ( -us𝑞) = ( -us𝐵))
7170breq1d 5134 . . . . . . . . 9 (𝑞 = 𝐵 → (( -us𝑞) <s ( -us𝐴) ↔ ( -us𝐵) <s ( -us𝐴)))
7269, 71imbi12d 344 . . . . . . . 8 (𝑞 = 𝐵 → ((𝐴 <s 𝑞 → ( -us𝑞) <s ( -us𝐴)) ↔ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴))))
7372anbi2d 630 . . . . . . 7 (𝑞 = 𝐵 → ((( -us𝐴) ∈ No ∧ (𝐴 <s 𝑞 → ( -us𝑞) <s ( -us𝐴))) ↔ (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴)))))
7468, 73imbi12d 344 . . . . . 6 (𝑞 = 𝐵 → ((𝑎 = (( bday 𝐴) ∪ ( bday 𝑞)) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝑞 → ( -us𝑞) <s ( -us𝐴)))) ↔ (𝑎 = (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴))))))
7565, 74rspc2v 3617 . . . . 5 ((𝐴 No 𝐵 No ) → (∀𝑝 No 𝑞 No (𝑎 = (( bday 𝑝) ∪ ( bday 𝑞)) → (( -us𝑝) ∈ No ∧ (𝑝 <s 𝑞 → ( -us𝑞) <s ( -us𝑝)))) → (𝑎 = (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴))))))
7655, 75syl5com 31 . . . 4 (𝑎 ∈ On → ((𝐴 No 𝐵 No ) → (𝑎 = (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴))))))
7776com23 86 . . 3 (𝑎 ∈ On → (𝑎 = (( bday 𝐴) ∪ ( bday 𝐵)) → ((𝐴 No 𝐵 No ) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴))))))
7877rexlimiv 3135 . 2 (∃𝑎 ∈ On 𝑎 = (( bday 𝐴) ∪ ( bday 𝐵)) → ((𝐴 No 𝐵 No ) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴)))))
795, 78ax-mp 5 1 ((𝐴 No 𝐵 No ) → (( -us𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us𝐵) <s ( -us𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cun 3929  {csn 4606   class class class wbr 5124  cima 5662  Oncon0 6357  cfv 6536   No csur 27608   <s cslt 27609   bday cbday 27610   <<s csslt 27749   L cleft 27810   R cright 27811   -us cnegs 27982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-negs 27984
This theorem is referenced by:  negscl  27999  sltnegim  28001  negscut  28002
  Copyright terms: Public domain W3C validator