| Step | Hyp | Ref
| Expression |
| 1 | | bdayelon 27745 |
. . . 4
⊢ ( bday ‘𝐴) ∈ On |
| 2 | | bdayelon 27745 |
. . . 4
⊢ ( bday ‘𝐵) ∈ On |
| 3 | 1, 2 | onun2i 6481 |
. . 3
⊢ (( bday ‘𝐴) ∪ ( bday
‘𝐵)) ∈
On |
| 4 | | risset 3221 |
. . 3
⊢ ((( bday ‘𝐴) ∪ ( bday
‘𝐵)) ∈ On
↔ ∃𝑎 ∈ On
𝑎 = (( bday ‘𝐴) ∪ ( bday
‘𝐵))) |
| 5 | 3, 4 | mpbi 230 |
. 2
⊢
∃𝑎 ∈ On
𝑎 = (( bday ‘𝐴) ∪ ( bday
‘𝐵)) |
| 6 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) ↔ 𝑏 = (( bday
‘𝑝) ∪
( bday ‘𝑞)))) |
| 7 | 6 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ((𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))
↔ (𝑏 = (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑝)
∈ No ∧ (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)))))) |
| 8 | 7 | 2ralbidv 3209 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (∀𝑝 ∈ No
∀𝑞 ∈ No (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))
↔ ∀𝑝 ∈
No ∀𝑞 ∈ No
(𝑏 = (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑝)
∈ No ∧ (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)))))) |
| 9 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑥 → ( bday
‘𝑝) = ( bday ‘𝑥)) |
| 10 | 9 | uneq1d 4147 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑥 → (( bday
‘𝑝) ∪
( bday ‘𝑞)) = (( bday
‘𝑥) ∪
( bday ‘𝑞))) |
| 11 | 10 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑝 = 𝑥 → (𝑏 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) ↔ 𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑞)))) |
| 12 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑥 → ( -us ‘𝑝) = ( -us
‘𝑥)) |
| 13 | 12 | eleq1d 2820 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑥 → (( -us ‘𝑝) ∈
No ↔ ( -us ‘𝑥) ∈ No
)) |
| 14 | | breq1 5127 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑥 → (𝑝 <s 𝑞 ↔ 𝑥 <s 𝑞)) |
| 15 | 12 | breq2d 5136 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑥 → (( -us ‘𝑞) <s ( -us
‘𝑝) ↔ (
-us ‘𝑞)
<s ( -us ‘𝑥))) |
| 16 | 14, 15 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑥 → ((𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)) ↔ (𝑥 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑥)))) |
| 17 | 13, 16 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑝 = 𝑥 → ((( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝)))
↔ (( -us ‘𝑥) ∈ No
∧ (𝑥 <s 𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑥))))) |
| 18 | 11, 17 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑝 = 𝑥 → ((𝑏 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))
↔ (𝑏 = (( bday ‘𝑥) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑥)))))) |
| 19 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑦 → ( bday
‘𝑞) = ( bday ‘𝑦)) |
| 20 | 19 | uneq2d 4148 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑦 → (( bday
‘𝑥) ∪
( bday ‘𝑞)) = (( bday
‘𝑥) ∪
( bday ‘𝑦))) |
| 21 | 20 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑞 = 𝑦 → (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑞)) ↔ 𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)))) |
| 22 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑦 → (𝑥 <s 𝑞 ↔ 𝑥 <s 𝑦)) |
| 23 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑦 → ( -us ‘𝑞) = ( -us
‘𝑦)) |
| 24 | 23 | breq1d 5134 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑦 → (( -us ‘𝑞) <s ( -us
‘𝑥) ↔ (
-us ‘𝑦)
<s ( -us ‘𝑥))) |
| 25 | 22, 24 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑦 → ((𝑥 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑥)) ↔ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))) |
| 26 | 25 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑞 = 𝑦 → ((( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑥)))
↔ (( -us ‘𝑥) ∈ No
∧ (𝑥 <s 𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))) |
| 27 | 21, 26 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑞 = 𝑦 → ((𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑞)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑥))))
↔ (𝑏 = (( bday ‘𝑥) ∪ ( bday
‘𝑦)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))))) |
| 28 | 18, 27 | cbvral2vw 3228 |
. . . . . . 7
⊢
(∀𝑝 ∈
No ∀𝑞 ∈ No
(𝑏 = (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑝)
∈ No ∧ (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)))) ↔
∀𝑥 ∈ No ∀𝑦 ∈ No
(𝑏 = (( bday ‘𝑥) ∪ ( bday
‘𝑦)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 29 | 8, 28 | bitrdi 287 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (∀𝑝 ∈ No
∀𝑞 ∈ No (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))
↔ ∀𝑥 ∈
No ∀𝑦 ∈ No
(𝑏 = (( bday ‘𝑥) ∪ ( bday
‘𝑦)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))))) |
| 30 | | raleq 3306 |
. . . . . . . . . . 11
⊢ (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (∀𝑏 ∈ 𝑎 ∀𝑥 ∈ No
∀𝑦 ∈ No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
↔ ∀𝑏 ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞))∀𝑥 ∈ No
∀𝑦 ∈ No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥)))))) |
| 31 | | ralrot3 3278 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
No ∀𝑦 ∈ No
∀𝑏 ∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞))(𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
↔ ∀𝑏 ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞))∀𝑥 ∈ No
∀𝑦 ∈ No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))) |
| 32 | | r19.23v 3169 |
. . . . . . . . . . . . . 14
⊢
(∀𝑏 ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞))(𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
↔ (∃𝑏 ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞))𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))) |
| 33 | | risset 3221 |
. . . . . . . . . . . . . . 15
⊢ ((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) ↔
∃𝑏 ∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞))𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦))) |
| 34 | 33 | imbi1i 349 |
. . . . . . . . . . . . . 14
⊢ (((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))) ↔
(∃𝑏 ∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞))𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))) |
| 35 | 32, 34 | bitr4i 278 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞))(𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
↔ ((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 36 | 35 | 2ralbii 3116 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
No ∀𝑦 ∈ No
∀𝑏 ∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞))(𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
↔ ∀𝑥 ∈
No ∀𝑦 ∈ No
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 37 | 31, 36 | bitr3i 277 |
. . . . . . . . . . 11
⊢
(∀𝑏 ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞))∀𝑥 ∈ No
∀𝑦 ∈ No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
↔ ∀𝑥 ∈
No ∀𝑦 ∈ No
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 38 | 30, 37 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (∀𝑏 ∈ 𝑎 ∀𝑥 ∈ No
∀𝑦 ∈ No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
↔ ∀𝑥 ∈
No ∀𝑦 ∈ No
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))))) |
| 39 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) →
∀𝑥 ∈ No ∀𝑦 ∈ No
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 40 | | simpll 766 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) → 𝑝 ∈
No ) |
| 41 | 39, 40 | negsproplem3 27993 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) → ((
-us ‘𝑝)
∈ No ∧ ( -us “ ( R
‘𝑝)) <<s {(
-us ‘𝑝)}
∧ {( -us ‘𝑝)} <<s ( -us “ ( L
‘𝑝)))) |
| 42 | 41 | simp1d 1142 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) → (
-us ‘𝑝)
∈ No ) |
| 43 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) ∧ 𝑝 <s 𝑞) → ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 44 | | simplll 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) ∧ 𝑝 <s 𝑞) → 𝑝 ∈ No
) |
| 45 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) ∧ 𝑝 <s 𝑞) → 𝑞 ∈ No
) |
| 46 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) ∧ 𝑝 <s 𝑞) → 𝑝 <s 𝑞) |
| 47 | 43, 44, 45, 46 | negsproplem7 27997 |
. . . . . . . . . . . . 13
⊢ ((((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) ∧ 𝑝 <s 𝑞) → ( -us ‘𝑞) <s ( -us
‘𝑝)) |
| 48 | 47 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) → (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝))) |
| 49 | 42, 48 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈
No ∧ 𝑞 ∈
No ) ∧ ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) → ((
-us ‘𝑝)
∈ No ∧ (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)))) |
| 50 | 49 | expcom 413 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
No ∀𝑦 ∈ No
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))) → ((𝑝 ∈
No ∧ 𝑞 ∈
No ) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))) |
| 51 | 38, 50 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (∀𝑏 ∈ 𝑎 ∀𝑥 ∈ No
∀𝑦 ∈ No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
→ ((𝑝 ∈ No ∧ 𝑞 ∈ No )
→ (( -us ‘𝑝) ∈ No
∧ (𝑝 <s 𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝)))))) |
| 52 | 51 | com3l 89 |
. . . . . . . 8
⊢
(∀𝑏 ∈
𝑎 ∀𝑥 ∈
No ∀𝑦 ∈
No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
→ ((𝑝 ∈ No ∧ 𝑞 ∈ No )
→ (𝑎 = (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑝)
∈ No ∧ (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)))))) |
| 53 | 52 | ralrimivv 3186 |
. . . . . . 7
⊢
(∀𝑏 ∈
𝑎 ∀𝑥 ∈
No ∀𝑦 ∈
No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
→ ∀𝑝 ∈
No ∀𝑞 ∈ No
(𝑎 = (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑝)
∈ No ∧ (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝))))) |
| 54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝑎 ∈ On → (∀𝑏 ∈ 𝑎 ∀𝑥 ∈ No
∀𝑦 ∈ No (𝑏 = (( bday
‘𝑥) ∪
( bday ‘𝑦)) → (( -us ‘𝑥) ∈
No ∧ (𝑥 <s
𝑦 → ( -us
‘𝑦) <s (
-us ‘𝑥))))
→ ∀𝑝 ∈
No ∀𝑞 ∈ No
(𝑎 = (( bday ‘𝑝) ∪ ( bday
‘𝑞)) → ((
-us ‘𝑝)
∈ No ∧ (𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)))))) |
| 55 | 29, 54 | tfis2 7857 |
. . . . 5
⊢ (𝑎 ∈ On → ∀𝑝 ∈
No ∀𝑞 ∈
No (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))) |
| 56 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑝 = 𝐴 → ( bday
‘𝑝) = ( bday ‘𝐴)) |
| 57 | 56 | uneq1d 4147 |
. . . . . . . 8
⊢ (𝑝 = 𝐴 → (( bday
‘𝑝) ∪
( bday ‘𝑞)) = (( bday
‘𝐴) ∪
( bday ‘𝑞))) |
| 58 | 57 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑝 = 𝐴 → (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) ↔ 𝑎 = (( bday
‘𝐴) ∪
( bday ‘𝑞)))) |
| 59 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑝 = 𝐴 → ( -us ‘𝑝) = ( -us
‘𝐴)) |
| 60 | 59 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑝 = 𝐴 → (( -us ‘𝑝) ∈
No ↔ ( -us ‘𝐴) ∈ No
)) |
| 61 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑝 = 𝐴 → (𝑝 <s 𝑞 ↔ 𝐴 <s 𝑞)) |
| 62 | 59 | breq2d 5136 |
. . . . . . . . 9
⊢ (𝑝 = 𝐴 → (( -us ‘𝑞) <s ( -us
‘𝑝) ↔ (
-us ‘𝑞)
<s ( -us ‘𝐴))) |
| 63 | 61, 62 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑝 = 𝐴 → ((𝑝 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝑝)) ↔ (𝐴 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝐴)))) |
| 64 | 60, 63 | anbi12d 632 |
. . . . . . 7
⊢ (𝑝 = 𝐴 → ((( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝)))
↔ (( -us ‘𝐴) ∈ No
∧ (𝐴 <s 𝑞 → ( -us
‘𝑞) <s (
-us ‘𝐴))))) |
| 65 | 58, 64 | imbi12d 344 |
. . . . . 6
⊢ (𝑝 = 𝐴 → ((𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))
↔ (𝑎 = (( bday ‘𝐴) ∪ ( bday
‘𝑞)) → ((
-us ‘𝐴)
∈ No ∧ (𝐴 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝐴)))))) |
| 66 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑞 = 𝐵 → ( bday
‘𝑞) = ( bday ‘𝐵)) |
| 67 | 66 | uneq2d 4148 |
. . . . . . . 8
⊢ (𝑞 = 𝐵 → (( bday
‘𝐴) ∪
( bday ‘𝑞)) = (( bday
‘𝐴) ∪
( bday ‘𝐵))) |
| 68 | 67 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑞 = 𝐵 → (𝑎 = (( bday
‘𝐴) ∪
( bday ‘𝑞)) ↔ 𝑎 = (( bday
‘𝐴) ∪
( bday ‘𝐵)))) |
| 69 | | breq2 5128 |
. . . . . . . . 9
⊢ (𝑞 = 𝐵 → (𝐴 <s 𝑞 ↔ 𝐴 <s 𝐵)) |
| 70 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑞 = 𝐵 → ( -us ‘𝑞) = ( -us
‘𝐵)) |
| 71 | 70 | breq1d 5134 |
. . . . . . . . 9
⊢ (𝑞 = 𝐵 → (( -us ‘𝑞) <s ( -us
‘𝐴) ↔ (
-us ‘𝐵)
<s ( -us ‘𝐴))) |
| 72 | 69, 71 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑞 = 𝐵 → ((𝐴 <s 𝑞 → ( -us ‘𝑞) <s ( -us
‘𝐴)) ↔ (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us
‘𝐴)))) |
| 73 | 72 | anbi2d 630 |
. . . . . . 7
⊢ (𝑞 = 𝐵 → ((( -us ‘𝐴) ∈
No ∧ (𝐴 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝐴)))
↔ (( -us ‘𝐴) ∈ No
∧ (𝐴 <s 𝐵 → ( -us
‘𝐵) <s (
-us ‘𝐴))))) |
| 74 | 68, 73 | imbi12d 344 |
. . . . . 6
⊢ (𝑞 = 𝐵 → ((𝑎 = (( bday
‘𝐴) ∪
( bday ‘𝑞)) → (( -us ‘𝐴) ∈
No ∧ (𝐴 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝐴))))
↔ (𝑎 = (( bday ‘𝐴) ∪ ( bday
‘𝐵)) → ((
-us ‘𝐴)
∈ No ∧ (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us
‘𝐴)))))) |
| 75 | 65, 74 | rspc2v 3617 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∀𝑝 ∈ No
∀𝑞 ∈ No (𝑎 = (( bday
‘𝑝) ∪
( bday ‘𝑞)) → (( -us ‘𝑝) ∈
No ∧ (𝑝 <s
𝑞 → ( -us
‘𝑞) <s (
-us ‘𝑝))))
→ (𝑎 = (( bday ‘𝐴) ∪ ( bday
‘𝐵)) → ((
-us ‘𝐴)
∈ No ∧ (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us
‘𝐴)))))) |
| 76 | 55, 75 | syl5com 31 |
. . . 4
⊢ (𝑎 ∈ On → ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑎 = (( bday
‘𝐴) ∪
( bday ‘𝐵)) → (( -us ‘𝐴) ∈
No ∧ (𝐴 <s
𝐵 → ( -us
‘𝐵) <s (
-us ‘𝐴)))))) |
| 77 | 76 | com23 86 |
. . 3
⊢ (𝑎 ∈ On → (𝑎 = (( bday
‘𝐴) ∪
( bday ‘𝐵)) → ((𝐴 ∈ No
∧ 𝐵 ∈ No ) → (( -us ‘𝐴) ∈ No
∧ (𝐴 <s 𝐵 → ( -us
‘𝐵) <s (
-us ‘𝐴)))))) |
| 78 | 77 | rexlimiv 3135 |
. 2
⊢
(∃𝑎 ∈ On
𝑎 = (( bday ‘𝐴) ∪ ( bday
‘𝐵)) →
((𝐴 ∈ No ∧ 𝐵 ∈ No )
→ (( -us ‘𝐴) ∈ No
∧ (𝐴 <s 𝐵 → ( -us
‘𝐵) <s (
-us ‘𝐴))))) |
| 79 | 5, 78 | ax-mp 5 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( -us ‘𝐴) ∈
No ∧ (𝐴 <s
𝐵 → ( -us
‘𝐵) <s (
-us ‘𝐴)))) |