MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralprgf Structured version   Visualization version   GIF version

Theorem ralprgf 4633
Description: Convert a restricted universal quantification over a pair to a conjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011.) (Revised by AV, 8-Apr-2023.)
Hypotheses
Ref Expression
ralprgf.1 𝑥𝜓
ralprgf.2 𝑥𝜒
ralprgf.a (𝑥 = 𝐴 → (𝜑𝜓))
ralprgf.b (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralprgf ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ralprgf
StepHypRef Expression
1 df-pr 4573 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21raleqi 3416 . . 3 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑)
3 ralunb 4170 . . 3 (∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
42, 3bitri 277 . 2 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
5 ralprgf.1 . . . 4 𝑥𝜓
6 ralprgf.a . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6ralsngf 4614 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
8 ralprgf.2 . . . 4 𝑥𝜒
9 ralprgf.b . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
108, 9ralsngf 4614 . . 3 (𝐵𝑊 → (∀𝑥 ∈ {𝐵}𝜑𝜒))
117, 10bi2anan9 637 . 2 ((𝐴𝑉𝐵𝑊) → ((∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
124, 11syl5bb 285 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wnf 1783  wcel 2113  wral 3141  cun 3937  {csn 4570  {cpr 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-v 3499  df-sbc 3776  df-un 3944  df-sn 4571  df-pr 4573
This theorem is referenced by:  ralprg  4635
  Copyright terms: Public domain W3C validator