Step | Hyp | Ref
| Expression |
1 | | nfsbc1v 3731 |
. . 3
⊢
Ⅎ𝑥[𝑐 / 𝑥]𝜑 |
2 | | nfsbc1v 3731 |
. . 3
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝜑 |
3 | | sbceq1a 3722 |
. . 3
⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) |
4 | | dfsbcq 3713 |
. . 3
⊢ (𝑤 = 𝑐 → ([𝑤 / 𝑥]𝜑 ↔ [𝑐 / 𝑥]𝜑)) |
5 | 1, 2, 3, 4 | reu8nf 3806 |
. 2
⊢
(∃!𝑥 ∈
{𝐴}𝜑 ↔ ∃𝑥 ∈ {𝐴} (𝜑 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝑥 = 𝑐))) |
6 | | rexsngf.1 |
. . . . 5
⊢
Ⅎ𝑥𝜓 |
7 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥{𝐴} |
8 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 = 𝑐 |
9 | 1, 8 | nfim 1900 |
. . . . . 6
⊢
Ⅎ𝑥([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐) |
10 | 7, 9 | nfralw 3149 |
. . . . 5
⊢
Ⅎ𝑥∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐) |
11 | 6, 10 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑥(𝜓 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐)) |
12 | | rexsngf.2 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
13 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 = 𝑐 ↔ 𝐴 = 𝑐)) |
14 | 13 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (([𝑐 / 𝑥]𝜑 → 𝑥 = 𝑐) ↔ ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐))) |
15 | 14 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 = 𝐴 → (∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝑥 = 𝑐) ↔ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐))) |
16 | 12, 15 | anbi12d 630 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝜑 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝑥 = 𝑐)) ↔ (𝜓 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐)))) |
17 | 11, 16 | rexsngf 4603 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴} (𝜑 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝑥 = 𝑐)) ↔ (𝜓 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐)))) |
18 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑐([𝐴 / 𝑥]𝜑 → 𝐴 = 𝐴) |
19 | | dfsbcq 3713 |
. . . . . . 7
⊢ (𝑐 = 𝐴 → ([𝑐 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
20 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑐 = 𝐴 → (𝐴 = 𝑐 ↔ 𝐴 = 𝐴)) |
21 | 19, 20 | imbi12d 344 |
. . . . . 6
⊢ (𝑐 = 𝐴 → (([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐) ↔ ([𝐴 / 𝑥]𝜑 → 𝐴 = 𝐴))) |
22 | 18, 21 | ralsngf 4604 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐) ↔ ([𝐴 / 𝑥]𝜑 → 𝐴 = 𝐴))) |
23 | 22 | anbi2d 628 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝜓 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐)) ↔ (𝜓 ∧ ([𝐴 / 𝑥]𝜑 → 𝐴 = 𝐴)))) |
24 | | eqidd 2739 |
. . . . 5
⊢
([𝐴 / 𝑥]𝜑 → 𝐴 = 𝐴) |
25 | 24 | biantru 529 |
. . . 4
⊢ (𝜓 ↔ (𝜓 ∧ ([𝐴 / 𝑥]𝜑 → 𝐴 = 𝐴))) |
26 | 23, 25 | bitr4di 288 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝜓 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝐴 = 𝑐)) ↔ 𝜓)) |
27 | 17, 26 | bitrd 278 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴} (𝜑 ∧ ∀𝑐 ∈ {𝐴} ([𝑐 / 𝑥]𝜑 → 𝑥 = 𝑐)) ↔ 𝜓)) |
28 | 5, 27 | syl5bb 282 |
1
⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |