MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsngf Structured version   Visualization version   GIF version

Theorem rexsngf 4636
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) (Revised by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rexsngf.1 𝑥𝜓
rexsngf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexsngf (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem rexsngf
StepHypRef Expression
1 rexsns 4635 . 2 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
2 rexsngf.1 . . 3 𝑥𝜓
3 rexsngf.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
42, 3sbciegf 3783 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
51, 4bitrid 283 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wnf 1786  wcel 2107  wrex 3074  [wsbc 3744  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rex 3075  df-v 3450  df-sbc 3745  df-sn 4592
This theorem is referenced by:  reusngf  4638  rexsngOLD  4644  rexprgf  4659  rmosn  4685  iunxsngf  5057
  Copyright terms: Public domain W3C validator