![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsngf | Structured version Visualization version GIF version |
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) (Revised by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rexsngf.1 | ⊢ Ⅎ𝑥𝜓 |
rexsngf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsngf | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexsns 4635 | . 2 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | |
2 | rexsngf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | rexsngf.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbciegf 3783 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
5 | 1, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ∃wrex 3074 [wsbc 3744 {csn 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3075 df-v 3450 df-sbc 3745 df-sn 4592 |
This theorem is referenced by: reusngf 4638 rexsngOLD 4644 rexprgf 4659 rmosn 4685 iunxsngf 5057 |
Copyright terms: Public domain | W3C validator |