Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralv | Structured version Visualization version GIF version |
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
ralv | ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) | |
2 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | a1bi 363 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V → 𝜑)) |
4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) |
5 | 1, 4 | bitr4i 278 | 1 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-v 3439 |
This theorem is referenced by: viin 5001 ralcom4f 30867 hfext 34534 clsk1independent 41869 ntrneiel2 41909 ntrneik4w 41923 |
Copyright terms: Public domain | W3C validator |