MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralv Structured version   Visualization version   GIF version

Theorem ralv 3454
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
ralv (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)

Proof of Theorem ralv
StepHypRef Expression
1 df-ral 3070 . 2 (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑))
2 vex 3434 . . . 4 𝑥 ∈ V
32a1bi 362 . . 3 (𝜑 ↔ (𝑥 ∈ V → 𝜑))
43albii 1825 . 2 (∀𝑥𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑))
51, 4bitr4i 277 1 (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2109  wral 3065  Vcvv 3430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-v 3432
This theorem is referenced by:  viin  4998  ralcom4f  30797  hfext  34464  clsk1independent  41609  ntrneiel2  41649  ntrneik4w  41663
  Copyright terms: Public domain W3C validator