| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralv | Structured version Visualization version GIF version | ||
| Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| ralv | ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | a1bi 362 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V → 𝜑)) |
| 4 | 3 | albii 1820 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 |
| This theorem is referenced by: viin 5011 ralcom4f 32446 hfext 36227 clsk1independent 44149 ntrneiel2 44189 ntrneik4w 44203 |
| Copyright terms: Public domain | W3C validator |