MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralv Structured version   Visualization version   GIF version

Theorem ralv 3487
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
ralv (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)

Proof of Theorem ralv
StepHypRef Expression
1 df-ral 3052 . 2 (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑))
2 vex 3463 . . . 4 𝑥 ∈ V
32a1bi 362 . . 3 (𝜑 ↔ (𝑥 ∈ V → 𝜑))
43albii 1819 . 2 (∀𝑥𝜑 ↔ ∀𝑥(𝑥 ∈ V → 𝜑))
51, 4bitr4i 278 1 (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2108  wral 3051  Vcvv 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461
This theorem is referenced by:  viin  5041  ralcom4f  32448  hfext  36201  clsk1independent  44070  ntrneiel2  44110  ntrneik4w  44124
  Copyright terms: Public domain W3C validator