Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfext Structured version   Visualization version   GIF version

Theorem hfext 36171
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfext ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem hfext
StepHypRef Expression
1 dfcleq 2722 . . 3 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 unvdif 4438 . . . . 5 ( Hf ∪ (V ∖ Hf )) = V
32raleqi 3297 . . . 4 (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵) ↔ ∀𝑥 ∈ V (𝑥𝐴𝑥𝐵))
4 ralv 3474 . . . 4 (∀𝑥 ∈ V (𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr2i 276 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵))
6 ralunb 4160 . . 3 (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵) ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵)))
71, 5, 63bitri 297 . 2 (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵)))
8 vex 3451 . . . . . 6 𝑥 ∈ V
9 eldif 3924 . . . . . 6 (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf ))
108, 9mpbiran 709 . . . . 5 (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf )
11 hfelhf 36169 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ Hf ) → 𝑥 ∈ Hf )
1211stoic1b 1773 . . . . . . 7 ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐴)
1312adantlr 715 . . . . . 6 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐴)
14 hfelhf 36169 . . . . . . . 8 ((𝑥𝐵𝐵 ∈ Hf ) → 𝑥 ∈ Hf )
1514stoic1b 1773 . . . . . . 7 ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐵)
1615adantll 714 . . . . . 6 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐵)
1713, 162falsed 376 . . . . 5 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥𝐴𝑥𝐵))
1810, 17sylan2b 594 . . . 4 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥𝐴𝑥𝐵))
1918ralrimiva 3125 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵))
2019biantrud 531 . 2 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵))))
217, 20bitr4id 290 1 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  cun 3912   Hf chf 36160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-r1 9717  df-rank 9718  df-hf 36161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator