![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfext | Structured version Visualization version GIF version |
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfext | ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2720 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | unvdif 4470 | . . . . 5 ⊢ ( Hf ∪ (V ∖ Hf )) = V | |
3 | 2 | raleqi 3318 | . . . 4 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | ralv 3494 | . . . 4 ⊢ (∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr2i 276 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | ralunb 4187 | . . 3 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
7 | 1, 5, 6 | 3bitri 297 | . 2 ⊢ (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
8 | vex 3473 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | eldif 3954 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf )) | |
10 | 8, 9 | mpbiran 708 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf ) |
11 | hfelhf 35713 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Hf ) → 𝑥 ∈ Hf ) | |
12 | 11 | stoic1b 1768 | . . . . . . 7 ⊢ ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | adantlr 714 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
14 | hfelhf 35713 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝑥 ∈ Hf ) | |
15 | 14 | stoic1b 1768 | . . . . . . 7 ⊢ ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
16 | 15 | adantll 713 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
17 | 13, 16 | 2falsed 376 | . . . . 5 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
18 | 10, 17 | sylan2b 593 | . . . 4 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
19 | 18 | ralrimiva 3141 | . . 3 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
20 | 19 | biantrud 531 | . 2 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
21 | 7, 20 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ∖ cdif 3941 ∪ cun 3942 Hf chf 35704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-reg 9607 ax-inf2 9656 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-r1 9779 df-rank 9780 df-hf 35705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |