![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfext | Structured version Visualization version GIF version |
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfext | ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2724 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | unvdif 4470 | . . . . 5 ⊢ ( Hf ∪ (V ∖ Hf )) = V | |
3 | 2 | raleqi 3322 | . . . 4 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | ralv 3497 | . . . 4 ⊢ (∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr2i 275 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | ralunb 4187 | . . 3 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
7 | 1, 5, 6 | 3bitri 296 | . 2 ⊢ (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
8 | vex 3477 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | eldif 3954 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf )) | |
10 | 8, 9 | mpbiran 707 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf ) |
11 | hfelhf 34983 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Hf ) → 𝑥 ∈ Hf ) | |
12 | 11 | stoic1b 1775 | . . . . . . 7 ⊢ ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | adantlr 713 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
14 | hfelhf 34983 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝑥 ∈ Hf ) | |
15 | 14 | stoic1b 1775 | . . . . . . 7 ⊢ ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
16 | 15 | adantll 712 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
17 | 13, 16 | 2falsed 376 | . . . . 5 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
18 | 10, 17 | sylan2b 594 | . . . 4 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
19 | 18 | ralrimiva 3145 | . . 3 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
20 | 19 | biantrud 532 | . 2 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
21 | 7, 20 | bitr4id 289 | 1 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∀wral 3060 Vcvv 3473 ∖ cdif 3941 ∪ cun 3942 Hf chf 34974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-reg 9569 ax-inf2 9618 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-r1 9741 df-rank 9742 df-hf 34975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |