Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfext | Structured version Visualization version GIF version |
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfext | ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | unvdif 4364 | . . . . 5 ⊢ ( Hf ∪ (V ∖ Hf )) = V | |
3 | 2 | raleqi 3314 | . . . 4 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | ralv 3422 | . . . 4 ⊢ (∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr2i 279 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | ralunb 4081 | . . 3 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
7 | 1, 5, 6 | 3bitri 300 | . 2 ⊢ (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
8 | vex 3402 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | eldif 3853 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf )) | |
10 | 8, 9 | mpbiran 709 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf ) |
11 | hfelhf 34121 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Hf ) → 𝑥 ∈ Hf ) | |
12 | 11 | stoic1b 1780 | . . . . . . 7 ⊢ ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | adantlr 715 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
14 | hfelhf 34121 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝑥 ∈ Hf ) | |
15 | 14 | stoic1b 1780 | . . . . . . 7 ⊢ ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
16 | 15 | adantll 714 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
17 | 13, 16 | 2falsed 380 | . . . . 5 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
18 | 10, 17 | sylan2b 597 | . . . 4 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
19 | 18 | ralrimiva 3096 | . . 3 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
20 | 19 | biantrud 535 | . 2 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
21 | 7, 20 | bitr4id 293 | 1 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1540 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 ∖ cdif 3840 ∪ cun 3841 Hf chf 34112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-reg 9129 ax-inf2 9177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-r1 9266 df-rank 9267 df-hf 34113 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |