![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfext | Structured version Visualization version GIF version |
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfext | ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2717 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | unvdif 4466 | . . . . 5 ⊢ ( Hf ∪ (V ∖ Hf )) = V | |
3 | 2 | raleqi 3315 | . . . 4 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | ralv 3491 | . . . 4 ⊢ (∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr2i 276 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | ralunb 4183 | . . 3 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
7 | 1, 5, 6 | 3bitri 297 | . 2 ⊢ (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
8 | vex 3470 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | eldif 3950 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf )) | |
10 | 8, 9 | mpbiran 706 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf ) |
11 | hfelhf 35648 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Hf ) → 𝑥 ∈ Hf ) | |
12 | 11 | stoic1b 1767 | . . . . . . 7 ⊢ ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | adantlr 712 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
14 | hfelhf 35648 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝑥 ∈ Hf ) | |
15 | 14 | stoic1b 1767 | . . . . . . 7 ⊢ ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
16 | 15 | adantll 711 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
17 | 13, 16 | 2falsed 376 | . . . . 5 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
18 | 10, 17 | sylan2b 593 | . . . 4 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
19 | 18 | ralrimiva 3138 | . . 3 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
20 | 19 | biantrud 531 | . 2 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
21 | 7, 20 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ∖ cdif 3937 ∪ cun 3938 Hf chf 35639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9583 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-r1 9755 df-rank 9756 df-hf 35640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |