Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfext Structured version   Visualization version   GIF version

Theorem hfext 36164
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfext ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem hfext
StepHypRef Expression
1 dfcleq 2727 . . 3 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 unvdif 4480 . . . . 5 ( Hf ∪ (V ∖ Hf )) = V
32raleqi 3321 . . . 4 (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵) ↔ ∀𝑥 ∈ V (𝑥𝐴𝑥𝐵))
4 ralv 3505 . . . 4 (∀𝑥 ∈ V (𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr2i 276 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵))
6 ralunb 4206 . . 3 (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵) ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵)))
71, 5, 63bitri 297 . 2 (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵)))
8 vex 3481 . . . . . 6 𝑥 ∈ V
9 eldif 3972 . . . . . 6 (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf ))
108, 9mpbiran 709 . . . . 5 (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf )
11 hfelhf 36162 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ Hf ) → 𝑥 ∈ Hf )
1211stoic1b 1769 . . . . . . 7 ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐴)
1312adantlr 715 . . . . . 6 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐴)
14 hfelhf 36162 . . . . . . . 8 ((𝑥𝐵𝐵 ∈ Hf ) → 𝑥 ∈ Hf )
1514stoic1b 1769 . . . . . . 7 ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐵)
1615adantll 714 . . . . . 6 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐵)
1713, 162falsed 376 . . . . 5 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥𝐴𝑥𝐵))
1810, 17sylan2b 594 . . . 4 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥𝐴𝑥𝐵))
1918ralrimiva 3143 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵))
2019biantrud 531 . 2 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵))))
217, 20bitr4id 290 1 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1534   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  cdif 3959  cun 3960   Hf chf 36153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-reg 9629  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-r1 9801  df-rank 9802  df-hf 36154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator