Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfext Structured version   Visualization version   GIF version

Theorem hfext 34412
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfext ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem hfext
StepHypRef Expression
1 dfcleq 2731 . . 3 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 unvdif 4405 . . . . 5 ( Hf ∪ (V ∖ Hf )) = V
32raleqi 3337 . . . 4 (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵) ↔ ∀𝑥 ∈ V (𝑥𝐴𝑥𝐵))
4 ralv 3446 . . . 4 (∀𝑥 ∈ V (𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr2i 275 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵))
6 ralunb 4121 . . 3 (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥𝐴𝑥𝐵) ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵)))
71, 5, 63bitri 296 . 2 (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵)))
8 vex 3426 . . . . . 6 𝑥 ∈ V
9 eldif 3893 . . . . . 6 (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf ))
108, 9mpbiran 705 . . . . 5 (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf )
11 hfelhf 34410 . . . . . . . 8 ((𝑥𝐴𝐴 ∈ Hf ) → 𝑥 ∈ Hf )
1211stoic1b 1777 . . . . . . 7 ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐴)
1312adantlr 711 . . . . . 6 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐴)
14 hfelhf 34410 . . . . . . . 8 ((𝑥𝐵𝐵 ∈ Hf ) → 𝑥 ∈ Hf )
1514stoic1b 1777 . . . . . . 7 ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐵)
1615adantll 710 . . . . . 6 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥𝐵)
1713, 162falsed 376 . . . . 5 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥𝐴𝑥𝐵))
1810, 17sylan2b 593 . . . 4 (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥𝐴𝑥𝐵))
1918ralrimiva 3107 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵))
2019biantrud 531 . 2 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ↔ (∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥𝐴𝑥𝐵))))
217, 20bitr4id 289 1 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cun 3881   Hf chf 34401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-r1 9453  df-rank 9454  df-hf 34402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator