![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfext | Structured version Visualization version GIF version |
Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfext | ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2727 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | unvdif 4480 | . . . . 5 ⊢ ( Hf ∪ (V ∖ Hf )) = V | |
3 | 2 | raleqi 3321 | . . . 4 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | ralv 3505 | . . . 4 ⊢ (∀𝑥 ∈ V (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr2i 276 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | ralunb 4206 | . . 3 ⊢ (∀𝑥 ∈ ( Hf ∪ (V ∖ Hf ))(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
7 | 1, 5, 6 | 3bitri 297 | . 2 ⊢ (𝐴 = 𝐵 ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
8 | vex 3481 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | eldif 3972 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ Hf )) | |
10 | 8, 9 | mpbiran 709 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ Hf ) ↔ ¬ 𝑥 ∈ Hf ) |
11 | hfelhf 36162 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Hf ) → 𝑥 ∈ Hf ) | |
12 | 11 | stoic1b 1769 | . . . . . . 7 ⊢ ((𝐴 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | adantlr 715 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐴) |
14 | hfelhf 36162 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝑥 ∈ Hf ) | |
15 | 14 | stoic1b 1769 | . . . . . . 7 ⊢ ((𝐵 ∈ Hf ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
16 | 15 | adantll 714 | . . . . . 6 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → ¬ 𝑥 ∈ 𝐵) |
17 | 13, 16 | 2falsed 376 | . . . . 5 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ ¬ 𝑥 ∈ Hf ) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
18 | 10, 17 | sylan2b 594 | . . . 4 ⊢ (((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) ∧ 𝑥 ∈ (V ∖ Hf )) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
19 | 18 | ralrimiva 3143 | . . 3 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
20 | 19 | biantrud 531 | . 2 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥 ∈ (V ∖ Hf )(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
21 | 7, 20 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1534 = wceq 1536 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 ∖ cdif 3959 ∪ cun 3960 Hf chf 36153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-reg 9629 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-r1 9801 df-rank 9802 df-hf 36154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |