Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik4w Structured version   Visualization version   GIF version

Theorem ntrneik4w 44089
Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik4w (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik4w
StepHypRef Expression
1 dfcleq 2722 . . . . 5 ((𝐼𝑠) = (𝐼‘(𝐼𝑠)) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2 eqcom 2736 . . . . 5 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ (𝐼𝑠) = (𝐼‘(𝐼𝑠)))
3 ralv 3474 . . . . 5 (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
41, 2, 33bitr4i 303 . . . 4 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
5 ssv 3971 . . . . . . 7 𝐵 ⊆ V
65a1i 11 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐵 ⊆ V)
7 vex 3451 . . . . . . . . 9 𝑥 ∈ V
8 eldif 3924 . . . . . . . . 9 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
97, 8mpbiran 709 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
10 ntrnei.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
11 ntrnei.f . . . . . . . . . . . . . . . 16 𝐹 = (𝒫 𝐵𝑂𝐵)
12 ntrnei.r . . . . . . . . . . . . . . . 16 (𝜑𝐼𝐹𝑁)
1310, 11, 12ntrneiiex 44065 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
14 elmapi 8822 . . . . . . . . . . . . . . 15 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
1615ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
1716elpwid 4572 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
1817sseld 3945 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
1918con3dimp 408 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼𝑠))
2015adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2120, 16ffvelcdmd 7057 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ∈ 𝒫 𝐵)
2221elpwid 4572 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ⊆ 𝐵)
2322sseld 3945 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) → 𝑥𝐵))
2423con3dimp 408 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼‘(𝐼𝑠)))
2519, 242falsed 376 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2625ex 412 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
279, 26biimtrid 242 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (V ∖ 𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
2827ralrimiv 3124 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ∀𝑥 ∈ (V ∖ 𝐵)(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
296, 28raldifeq 4457 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
3012adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
3130adantr 480 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
32 simpr 484 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
33 simplr 768 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
3410, 11, 31, 32, 33ntrneiel 44070 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
3516adantr 480 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
3610, 11, 31, 32, 35ntrneiel 44070 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
3734, 36bibi12d 345 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3837ralbidva 3154 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3929, 38bitr3d 281 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
404, 39bitrid 283 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
4140ralbidva 3154 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
42 ralcom 3265 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
4341, 42bitrdi 287 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  ntrneik4  44090
  Copyright terms: Public domain W3C validator