Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik4w Structured version   Visualization version   GIF version

Theorem ntrneik4w 39233
Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik4w (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik4w
StepHypRef Expression
1 dfcleq 2819 . . . . 5 ((𝐼𝑠) = (𝐼‘(𝐼𝑠)) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2 eqcom 2832 . . . . 5 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ (𝐼𝑠) = (𝐼‘(𝐼𝑠)))
3 ralv 3436 . . . . 5 (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
41, 2, 33bitr4i 295 . . . 4 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
5 ssv 3850 . . . . . . 7 𝐵 ⊆ V
65a1i 11 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐵 ⊆ V)
7 vex 3417 . . . . . . . . 9 𝑥 ∈ V
8 eldif 3808 . . . . . . . . 9 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
97, 8mpbiran 700 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
10 ntrnei.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
11 ntrnei.f . . . . . . . . . . . . . . . 16 𝐹 = (𝒫 𝐵𝑂𝐵)
12 ntrnei.r . . . . . . . . . . . . . . . 16 (𝜑𝐼𝐹𝑁)
1310, 11, 12ntrneiiex 39209 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
14 elmapi 8149 . . . . . . . . . . . . . . 15 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
1615ffvelrnda 6613 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
1716elpwid 4392 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
1817sseld 3826 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
1918con3dimp 399 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼𝑠))
2015adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2120, 16ffvelrnd 6614 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ∈ 𝒫 𝐵)
2221elpwid 4392 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ⊆ 𝐵)
2322sseld 3826 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) → 𝑥𝐵))
2423con3dimp 399 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼‘(𝐼𝑠)))
2519, 242falsed 368 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2625ex 403 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
279, 26syl5bi 234 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (V ∖ 𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
2827ralrimiv 3174 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ∀𝑥 ∈ (V ∖ 𝐵)(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
296, 28raldifeq 4283 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
3012adantr 474 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
3130adantr 474 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
32 simpr 479 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
33 simplr 785 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
3410, 11, 31, 32, 33ntrneiel 39214 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
3516adantr 474 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
3610, 11, 31, 32, 35ntrneiel 39214 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
3734, 36bibi12d 337 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3837ralbidva 3194 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3929, 38bitr3d 273 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
404, 39syl5bb 275 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
4140ralbidva 3194 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
42 ralcom 3308 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
4341, 42syl6bb 279 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wal 1654   = wceq 1656  wcel 2164  wral 3117  {crab 3121  Vcvv 3414  cdif 3795  wss 3798  𝒫 cpw 4380   class class class wbr 4875  cmpt 4954  wf 6123  cfv 6127  (class class class)co 6910  cmpt2 6912  𝑚 cmap 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-map 8129
This theorem is referenced by:  ntrneik4  39234
  Copyright terms: Public domain W3C validator