Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik4w Structured version   Visualization version   GIF version

Theorem ntrneik4w 43672
Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik4w (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik4w
StepHypRef Expression
1 dfcleq 2718 . . . . 5 ((𝐼𝑠) = (𝐼‘(𝐼𝑠)) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2 eqcom 2732 . . . . 5 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ (𝐼𝑠) = (𝐼‘(𝐼𝑠)))
3 ralv 3487 . . . . 5 (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
41, 2, 33bitr4i 302 . . . 4 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
5 ssv 4001 . . . . . . 7 𝐵 ⊆ V
65a1i 11 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐵 ⊆ V)
7 vex 3465 . . . . . . . . 9 𝑥 ∈ V
8 eldif 3954 . . . . . . . . 9 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
97, 8mpbiran 707 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
10 ntrnei.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
11 ntrnei.f . . . . . . . . . . . . . . . 16 𝐹 = (𝒫 𝐵𝑂𝐵)
12 ntrnei.r . . . . . . . . . . . . . . . 16 (𝜑𝐼𝐹𝑁)
1310, 11, 12ntrneiiex 43648 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
14 elmapi 8868 . . . . . . . . . . . . . . 15 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
1615ffvelcdmda 7093 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
1716elpwid 4613 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
1817sseld 3975 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
1918con3dimp 407 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼𝑠))
2015adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2120, 16ffvelcdmd 7094 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ∈ 𝒫 𝐵)
2221elpwid 4613 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ⊆ 𝐵)
2322sseld 3975 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) → 𝑥𝐵))
2423con3dimp 407 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼‘(𝐼𝑠)))
2519, 242falsed 375 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2625ex 411 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
279, 26biimtrid 241 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (V ∖ 𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
2827ralrimiv 3134 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ∀𝑥 ∈ (V ∖ 𝐵)(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
296, 28raldifeq 4495 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
3012adantr 479 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
3130adantr 479 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
32 simpr 483 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
33 simplr 767 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
3410, 11, 31, 32, 33ntrneiel 43653 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
3516adantr 479 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
3610, 11, 31, 32, 35ntrneiel 43653 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
3734, 36bibi12d 344 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3837ralbidva 3165 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3929, 38bitr3d 280 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
404, 39bitrid 282 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
4140ralbidva 3165 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
42 ralcom 3276 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
4341, 42bitrdi 286 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098  wral 3050  {crab 3418  Vcvv 3461  cdif 3941  wss 3944  𝒫 cpw 4604   class class class wbr 5149  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  cmpo 7421  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-map 8847
This theorem is referenced by:  ntrneik4  43673
  Copyright terms: Public domain W3C validator