MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  viin Structured version   Visualization version   GIF version

Theorem viin 5073
Description: Indexed intersection with a universal index class. When 𝐴 doesn't depend on 𝑥, this evaluates to 𝐴 by 19.3 2202 and abid2 2879. When 𝐴 = 𝑥, this evaluates to by intiin 5067 and intv 5373. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
viin 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem viin
StepHypRef Expression
1 df-iin 5002 . 2 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦𝐴}
2 ralv 3509 . . 3 (∀𝑥 ∈ V 𝑦𝐴 ↔ ∀𝑥 𝑦𝐴)
32abbii 2809 . 2 {𝑦 ∣ ∀𝑥 ∈ V 𝑦𝐴} = {𝑦 ∣ ∀𝑥 𝑦𝐴}
41, 3eqtri 2765 1 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
Colors of variables: wff setvar class
Syntax hints:  wal 1537   = wceq 1539  wcel 2108  {cab 2714  wral 3061  Vcvv 3481   ciin 5000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-v 3483  df-iin 5002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator