MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  viin Structured version   Visualization version   GIF version

Theorem viin 5088
Description: Indexed intersection with a universal index class. When 𝐴 doesn't depend on 𝑥, this evaluates to 𝐴 by 19.3 2203 and abid2 2882. When 𝐴 = 𝑥, this evaluates to by intiin 5082 and intv 5382. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
viin 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem viin
StepHypRef Expression
1 df-iin 5018 . 2 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦𝐴}
2 ralv 3516 . . 3 (∀𝑥 ∈ V 𝑦𝐴 ↔ ∀𝑥 𝑦𝐴)
32abbii 2812 . 2 {𝑦 ∣ ∀𝑥 ∈ V 𝑦𝐴} = {𝑦 ∣ ∀𝑥 𝑦𝐴}
41, 3eqtri 2768 1 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
Colors of variables: wff setvar class
Syntax hints:  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-iin 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator