Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > viin | Structured version Visualization version GIF version |
Description: Indexed intersection with a universal index class. When 𝐴 doesn't depend on 𝑥, this evaluates to 𝐴 by 19.3 2200 and abid2 2894. When 𝐴 = 𝑥, this evaluates to ∅ by intiin 4951 and intv 5236. (Contributed by NM, 11-Sep-2008.) |
Ref | Expression |
---|---|
viin | ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4889 | . 2 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} | |
2 | ralv 3435 | . . 3 ⊢ (∀𝑥 ∈ V 𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑦 ∈ 𝐴) | |
3 | 2 | abbii 2823 | . 2 ⊢ {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
4 | 1, 3 | eqtri 2781 | 1 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1536 = wceq 1538 ∈ wcel 2111 {cab 2735 ∀wral 3070 Vcvv 3409 ∩ ciin 4887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-iin 4889 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |