| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > viin | Structured version Visualization version GIF version | ||
| Description: Indexed intersection with a universal index class. When 𝐴 doesn't depend on 𝑥, this evaluates to 𝐴 by 19.3 2203 and abid2 2866. When 𝐴 = 𝑥, this evaluates to ∅ by intiin 5025 and intv 5321. (Contributed by NM, 11-Sep-2008.) |
| Ref | Expression |
|---|---|
| viin | ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4960 | . 2 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} | |
| 2 | ralv 3477 | . . 3 ⊢ (∀𝑥 ∈ V 𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
| 4 | 1, 3 | eqtri 2753 | 1 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 Vcvv 3450 ∩ ciin 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-iin 4960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |