![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralxfrALT | Structured version Visualization version GIF version |
Description: Alternate proof of ralxfr 5405 which does not use ralxfrd 5399. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralxfr.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
ralxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
ralxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxfrALT | ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr.1 | . . . . 5 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
2 | ralxfr.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rspcv 3602 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
5 | 4 | com12 32 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐶 → 𝜓)) |
6 | 5 | ralrimiv 3139 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐶 𝜓) |
7 | ralxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
8 | nfra1 3275 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐶 𝜓 | |
9 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
10 | rsp 3238 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → 𝜓)) | |
11 | 2 | biimprcd 249 | . . . . . 6 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
12 | 10, 11 | syl6 35 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → (𝑥 = 𝐴 → 𝜑))) |
13 | 8, 9, 12 | rexlimd 3257 | . . . 4 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝜑)) |
14 | 7, 13 | syl5 34 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑥 ∈ 𝐵 → 𝜑)) |
15 | 14 | ralrimiv 3139 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → ∀𝑥 ∈ 𝐵 𝜑) |
16 | 6, 15 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |