| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxfrALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of ralxfr 5414 which does not use ralxfrd 5408. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ralxfr.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
| ralxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| ralxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxfrALT | ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr.1 | . . . . 5 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
| 2 | ralxfr.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rspcv 3618 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 5 | 4 | com12 32 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐶 → 𝜓)) |
| 6 | 5 | ralrimiv 3145 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐶 𝜓) |
| 7 | ralxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 8 | nfra1 3284 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐶 𝜓 | |
| 9 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 10 | rsp 3247 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → 𝜓)) | |
| 11 | 2 | biimprcd 250 | . . . . . 6 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 12 | 10, 11 | syl6 35 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → (𝑥 = 𝐴 → 𝜑))) |
| 13 | 8, 9, 12 | rexlimd 3266 | . . . 4 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝜑)) |
| 14 | 7, 13 | syl5 34 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑥 ∈ 𝐵 → 𝜑)) |
| 15 | 14 | ralrimiv 3145 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → ∀𝑥 ∈ 𝐵 𝜑) |
| 16 | 6, 15 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |