![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralxfrd | Structured version Visualization version GIF version |
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
Ref | Expression |
---|---|
ralxfrd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
ralxfrd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
ralxfrd.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralxfrd | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfrd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
2 | ralxfrd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantlr 706 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | rspcdv 3529 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
5 | 4 | ralrimdva 3178 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐶 𝜒)) |
6 | ralxfrd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
7 | r19.29 3282 | . . . . . 6 ⊢ ((∀𝑦 ∈ 𝐶 𝜒 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 (𝜒 ∧ 𝑥 = 𝐴)) | |
8 | 2 | exbiri 845 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜒 → 𝜓))) |
9 | 8 | com23 86 | . . . . . . . 8 ⊢ (𝜑 → (𝜒 → (𝑥 = 𝐴 → 𝜓))) |
10 | 9 | impd 400 | . . . . . . 7 ⊢ (𝜑 → ((𝜒 ∧ 𝑥 = 𝐴) → 𝜓)) |
11 | 10 | rexlimdvw 3244 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 (𝜒 ∧ 𝑥 = 𝐴) → 𝜓)) |
12 | 7, 11 | syl5 34 | . . . . 5 ⊢ (𝜑 → ((∀𝑦 ∈ 𝐶 𝜒 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → 𝜓)) |
13 | 12 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑦 ∈ 𝐶 𝜒 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → 𝜓)) |
14 | 6, 13 | mpan2d 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐶 𝜒 → 𝜓)) |
15 | 14 | ralrimdva 3178 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐶 𝜒 → ∀𝑥 ∈ 𝐵 𝜓)) |
16 | 5, 15 | impbid 204 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 |
This theorem is referenced by: rexxfrd 5111 ralxfr2d 5112 ralxfr 5116 islindf4 20551 cmpfi 21589 rlimcnp 25112 ispisys2 30757 glbconN 35447 mapdordlem2 37707 |
Copyright terms: Public domain | W3C validator |