MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfrd Structured version   Visualization version   GIF version

Theorem ralxfrd 5299
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.)
Hypotheses
Ref Expression
ralxfrd.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
ralxfrd.2 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfrd.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralxfrd (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem ralxfrd
StepHypRef Expression
1 ralxfrd.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝐵)
2 ralxfrd.3 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32adantlr 713 . . . 4 (((𝜑𝑦𝐶) ∧ 𝑥 = 𝐴) → (𝜓𝜒))
41, 3rspcdv 3613 . . 3 ((𝜑𝑦𝐶) → (∀𝑥𝐵 𝜓𝜒))
54ralrimdva 3187 . 2 (𝜑 → (∀𝑥𝐵 𝜓 → ∀𝑦𝐶 𝜒))
6 ralxfrd.2 . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
7 r19.29 3252 . . . . . 6 ((∀𝑦𝐶 𝜒 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → ∃𝑦𝐶 (𝜒𝑥 = 𝐴))
82exbiri 809 . . . . . . . 8 (𝜑 → (𝑥 = 𝐴 → (𝜒𝜓)))
98impcomd 414 . . . . . . 7 (𝜑 → ((𝜒𝑥 = 𝐴) → 𝜓))
109rexlimdvw 3288 . . . . . 6 (𝜑 → (∃𝑦𝐶 (𝜒𝑥 = 𝐴) → 𝜓))
117, 10syl5 34 . . . . 5 (𝜑 → ((∀𝑦𝐶 𝜒 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → 𝜓))
1211adantr 483 . . . 4 ((𝜑𝑥𝐵) → ((∀𝑦𝐶 𝜒 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → 𝜓))
136, 12mpan2d 692 . . 3 ((𝜑𝑥𝐵) → (∀𝑦𝐶 𝜒𝜓))
1413ralrimdva 3187 . 2 (𝜑 → (∀𝑦𝐶 𝜒 → ∀𝑥𝐵 𝜓))
155, 14impbid 214 1 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1775  df-cleq 2812  df-clel 2891  df-ral 3141  df-rex 3142
This theorem is referenced by:  rexxfrd  5300  ralxfr2d  5301  ralxfr  5305  islindf4  20974  cmpfi  22008  rlimcnp  25535  ispisys2  31405  glbconN  36505  mapdordlem2  38765
  Copyright terms: Public domain W3C validator