| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexxfr | Structured version Visualization version GIF version | ||
| Description: Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| Ref | Expression |
|---|---|
| ralxfr.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
| ralxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| ralxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexxfr | ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3073 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜑) | |
| 2 | dfrex2 3073 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜓) | |
| 3 | ralxfr.1 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
| 4 | ralxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 5 | ralxfr.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 7 | 3, 4, 6 | ralxfr 5414 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐶 ¬ 𝜓) |
| 8 | 2, 7 | xchbinxr 335 | . 2 ⊢ (∃𝑦 ∈ 𝐶 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜑) |
| 9 | 1, 8 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: infm3 12227 reeff1o 26491 moxfr 42703 |
| Copyright terms: Public domain | W3C validator |