Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.12OLD | Structured version Visualization version GIF version |
Description: Obsolete version of 19.12 2328 as of 4-Nov-2024. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Avoid ax-13 2373, ax-ext 2710. (Revised by Wolf Lammen, 17-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
r19.12OLD | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝜑)) | |
2 | nfv 1922 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
3 | nfra1 3143 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
4 | 2, 3 | nfan 1907 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝜑) |
5 | 4 | nfex 2325 | . . 3 ⊢ Ⅎ𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝜑) |
6 | 1, 5 | nfxfr 1860 | . 2 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
7 | ax-1 6 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑)) | |
8 | rsp 3130 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → 𝜑)) | |
9 | 8 | com12 32 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → 𝜑)) |
10 | 9 | reximdv 3202 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
11 | 7, 10 | sylcom 30 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝜑)) |
12 | 6, 11 | ralrimi 3140 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∃wex 1787 ∈ wcel 2112 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2143 ax-11 2160 ax-12 2177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-ral 3069 df-rex 3070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |