MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.12OLD Structured version   Visualization version   GIF version

Theorem r19.12OLD 3255
Description: Obsolete version of 19.12 2328 as of 4-Nov-2024. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Avoid ax-13 2373, ax-ext 2710. (Revised by Wolf Lammen, 17-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r19.12OLD (∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem r19.12OLD
StepHypRef Expression
1 df-rex 3070 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦𝐵 𝜑))
2 nfv 1922 . . . . 5 𝑦 𝑥𝐴
3 nfra1 3143 . . . . 5 𝑦𝑦𝐵 𝜑
42, 3nfan 1907 . . . 4 𝑦(𝑥𝐴 ∧ ∀𝑦𝐵 𝜑)
54nfex 2325 . . 3 𝑦𝑥(𝑥𝐴 ∧ ∀𝑦𝐵 𝜑)
61, 5nfxfr 1860 . 2 𝑦𝑥𝐴𝑦𝐵 𝜑
7 ax-1 6 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 → (𝑦𝐵 → ∃𝑥𝐴𝑦𝐵 𝜑))
8 rsp 3130 . . . . 5 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
98com12 32 . . . 4 (𝑦𝐵 → (∀𝑦𝐵 𝜑𝜑))
109reximdv 3202 . . 3 (𝑦𝐵 → (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐴 𝜑))
117, 10sylcom 30 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 → (𝑦𝐵 → ∃𝑥𝐴 𝜑))
126, 11ralrimi 3140 1 (∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wex 1787  wcel 2112  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2143  ax-11 2160  ax-12 2177
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator