Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrnmpt2 Structured version   Visualization version   GIF version

Theorem disjrnmpt2 41815
Description: Disjointness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
disjrnmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
disjrnmpt2 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran 𝐹 𝑦)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥)

Proof of Theorem disjrnmpt2
Dummy variables 𝑢 𝑧 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑦 = 𝑤𝑦 = 𝑤)
21cbvdisjv 5006 . . . . 5 (Disj 𝑦 ∈ ran 𝐹 𝑦Disj 𝑤 ∈ ran 𝐹 𝑤)
3 id 22 . . . . . . 7 (𝑤 = 𝑣𝑤 = 𝑣)
43ndisj2 41685 . . . . . 6 Disj 𝑤 ∈ ran 𝐹 𝑤 ↔ ∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
54biimpi 219 . . . . 5 Disj 𝑤 ∈ ran 𝐹 𝑤 → ∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
62, 5sylnbi 333 . . . 4 Disj 𝑦 ∈ ran 𝐹 𝑦 → ∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
7 disjrnmpt2.1 . . . . . . . . . . . . 13 𝐹 = (𝑥𝐴𝐵)
87elrnmpt 5792 . . . . . . . . . . . 12 (𝑤 ∈ ran 𝐹 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑤 = 𝐵))
98ibi 270 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹 → ∃𝑥𝐴 𝑤 = 𝐵)
10 nfcv 2955 . . . . . . . . . . . . . . 15 𝑧𝐵
11 nfcsb1v 3852 . . . . . . . . . . . . . . 15 𝑥𝑧 / 𝑥𝐵
12 csbeq1a 3842 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1310, 11, 12cbvmpt 5131 . . . . . . . . . . . . . 14 (𝑥𝐴𝐵) = (𝑧𝐴𝑧 / 𝑥𝐵)
147, 13eqtri 2821 . . . . . . . . . . . . 13 𝐹 = (𝑧𝐴𝑧 / 𝑥𝐵)
1514elrnmpt 5792 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐹 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵))
1615ibi 270 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐹 → ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵)
179, 16anim12i 615 . . . . . . . . . 10 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → (∃𝑥𝐴 𝑤 = 𝐵 ∧ ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵))
18 nfv 1915 . . . . . . . . . . 11 𝑧 𝑤 = 𝐵
1911nfeq2 2972 . . . . . . . . . . 11 𝑥 𝑣 = 𝑧 / 𝑥𝐵
2018, 19reean 3319 . . . . . . . . . 10 (∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ↔ (∃𝑥𝐴 𝑤 = 𝐵 ∧ ∃𝑧𝐴 𝑣 = 𝑧 / 𝑥𝐵))
2117, 20sylibr 237 . . . . . . . . 9 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵))
2221adantr 484 . . . . . . . 8 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → ∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵))
23 nfmpt1 5128 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴𝐵)
247, 23nfcxfr 2953 . . . . . . . . . . . . 13 𝑥𝐹
2524nfrn 5788 . . . . . . . . . . . 12 𝑥ran 𝐹
2625nfcri 2943 . . . . . . . . . . 11 𝑥 𝑤 ∈ ran 𝐹
2725nfcri 2943 . . . . . . . . . . 11 𝑥 𝑣 ∈ ran 𝐹
2826, 27nfan 1900 . . . . . . . . . 10 𝑥(𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹)
29 nfv 1915 . . . . . . . . . 10 𝑥(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)
3028, 29nfan 1900 . . . . . . . . 9 𝑥((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅))
31 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝑤 = 𝐵)
3212adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝐵 = 𝑧 / 𝑥𝐵)
33 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑧 / 𝑥𝐵𝑣 = 𝑧 / 𝑥𝐵)
3433eqcomd 2804 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑧 / 𝑥𝐵𝑧 / 𝑥𝐵 = 𝑣)
3534ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝑧 / 𝑥𝐵 = 𝑣)
3631, 32, 353eqtrd 2837 . . . . . . . . . . . . . . . . . 18 (((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) ∧ 𝑥 = 𝑧) → 𝑤 = 𝑣)
3736adantll 713 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) ∧ 𝑥 = 𝑧) → 𝑤 = 𝑣)
38 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) ∧ 𝑥 = 𝑧) → 𝑤𝑣)
3938neneqd 2992 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) ∧ 𝑥 = 𝑧) → ¬ 𝑤 = 𝑣)
4037, 39pm2.65da 816 . . . . . . . . . . . . . . . 16 ((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → ¬ 𝑥 = 𝑧)
4140neqned 2994 . . . . . . . . . . . . . . 15 ((𝑤𝑣 ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝑥𝑧)
4241adantlr 714 . . . . . . . . . . . . . 14 (((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝑥𝑧)
43 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝐵𝑤 = 𝐵)
4443eqcomd 2804 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝐵𝐵 = 𝑤)
4544ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝐵 = 𝑤)
4634ad2antll 728 . . . . . . . . . . . . . . . . 17 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥𝐵 = 𝑣)
4745, 46ineq12d 4140 . . . . . . . . . . . . . . . 16 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝐵𝑧 / 𝑥𝐵) = (𝑤𝑣))
48 simpl 486 . . . . . . . . . . . . . . . 16 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝑤𝑣) ≠ ∅)
4947, 48eqnetrd 3054 . . . . . . . . . . . . . . 15 (((𝑤𝑣) ≠ ∅ ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝐵𝑧 / 𝑥𝐵) ≠ ∅)
5049adantll 713 . . . . . . . . . . . . . 14 (((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝐵𝑧 / 𝑥𝐵) ≠ ∅)
5142, 50jca 515 . . . . . . . . . . . . 13 (((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) ∧ (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵)) → (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
5251ex 416 . . . . . . . . . . . 12 ((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
5352adantl 485 . . . . . . . . . . 11 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → ((𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
5453reximdv 3232 . . . . . . . . . 10 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → (∃𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → ∃𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
5554a1d 25 . . . . . . . . 9 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → (𝑥𝐴 → (∃𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → ∃𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))))
5630, 55reximdai 3270 . . . . . . . 8 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → (∃𝑥𝐴𝑧𝐴 (𝑤 = 𝐵𝑣 = 𝑧 / 𝑥𝐵) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
5722, 56mpd 15 . . . . . . 7 (((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) ∧ (𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅)) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
5857ex 416 . . . . . 6 ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
5958a1i 11 . . . . 5 Disj 𝑦 ∈ ran 𝐹 𝑦 → ((𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹) → ((𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))))
6059rexlimdvv 3252 . . . 4 Disj 𝑦 ∈ ran 𝐹 𝑦 → (∃𝑤 ∈ ran 𝐹𝑣 ∈ ran 𝐹(𝑤𝑣 ∧ (𝑤𝑣) ≠ ∅) → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
616, 60mpd 15 . . 3 Disj 𝑦 ∈ ran 𝐹 𝑦 → ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
62 csbeq1 3831 . . . . . 6 (𝑢 = 𝑧𝑢 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
6362ndisj2 41685 . . . . 5 Disj 𝑢𝐴 𝑢 / 𝑥𝐵 ↔ ∃𝑢𝐴𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅))
64 nfcv 2955 . . . . . . 7 𝑥𝐴
65 nfv 1915 . . . . . . . 8 𝑥 𝑢𝑧
66 nfcsb1v 3852 . . . . . . . . . 10 𝑥𝑢 / 𝑥𝐵
6766, 11nfin 4143 . . . . . . . . 9 𝑥(𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵)
68 nfcv 2955 . . . . . . . . 9 𝑥
6967, 68nfne 3087 . . . . . . . 8 𝑥(𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅
7065, 69nfan 1900 . . . . . . 7 𝑥(𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅)
7164, 70nfrex 3268 . . . . . 6 𝑥𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅)
72 nfv 1915 . . . . . 6 𝑢𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)
73 neeq1 3049 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢𝑧𝑥𝑧))
74 csbeq1 3831 . . . . . . . . . . 11 (𝑢 = 𝑥𝑢 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
75 csbid 3841 . . . . . . . . . . 11 𝑥 / 𝑥𝐵 = 𝐵
7674, 75eqtrdi 2849 . . . . . . . . . 10 (𝑢 = 𝑥𝑢 / 𝑥𝐵 = 𝐵)
7776ineq1d 4138 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) = (𝐵𝑧 / 𝑥𝐵))
7877neeq1d 3046 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅ ↔ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
7973, 78anbi12d 633 . . . . . . 7 (𝑢 = 𝑥 → ((𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅) ↔ (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
8079rexbidv 3256 . . . . . 6 (𝑢 = 𝑥 → (∃𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅) ↔ ∃𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅)))
8171, 72, 80cbvrexw 3388 . . . . 5 (∃𝑢𝐴𝑧𝐴 (𝑢𝑧 ∧ (𝑢 / 𝑥𝐵𝑧 / 𝑥𝐵) ≠ ∅) ↔ ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
8263, 81bitri 278 . . . 4 Disj 𝑢𝐴 𝑢 / 𝑥𝐵 ↔ ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
83 nfcv 2955 . . . . 5 𝑢𝐵
84 csbeq1a 3842 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
8583, 66, 84cbvdisj 5005 . . . 4 (Disj 𝑥𝐴 𝐵Disj 𝑢𝐴 𝑢 / 𝑥𝐵)
8682, 85xchnxbir 336 . . 3 Disj 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧𝐴 (𝑥𝑧 ∧ (𝐵𝑧 / 𝑥𝐵) ≠ ∅))
8761, 86sylibr 237 . 2 Disj 𝑦 ∈ ran 𝐹 𝑦 → ¬ Disj 𝑥𝐴 𝐵)
8887con4i 114 1 (Disj 𝑥𝐴 𝐵Disj 𝑦 ∈ ran 𝐹 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  csb 3828  cin 3880  c0 4243  Disj wdisj 4995  cmpt 5110  ran crn 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-cnv 5527  df-dm 5529  df-rn 5530
This theorem is referenced by:  meadjiun  43105
  Copyright terms: Public domain W3C validator