Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcoels Structured version   Visualization version   GIF version

Theorem relcoels 38408
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
relcoels Rel ∼ 𝐴

Proof of Theorem relcoels
StepHypRef Expression
1 relcoss 38407 . 2 Rel ≀ ( E ↾ 𝐴)
2 df-coels 38396 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32releqi 5732 . 2 (Rel ∼ 𝐴 ↔ Rel ≀ ( E ↾ 𝐴))
41, 3mpbir 231 1 Rel ∼ 𝐴
Colors of variables: wff setvar class
Syntax hints:   E cep 5530  ccnv 5630  cres 5633  Rel wrel 5636  ccoss 38162  ccoels 38163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-opab 5165  df-xp 5637  df-rel 5638  df-coss 38395  df-coels 38396
This theorem is referenced by:  erimeq2  38663
  Copyright terms: Public domain W3C validator