![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoels | Structured version Visualization version GIF version |
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
Ref | Expression |
---|---|
relcoels | ⊢ Rel ∼ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss 37806 | . 2 ⊢ Rel ≀ (◡ E ↾ 𝐴) | |
2 | df-coels 37795 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
3 | 2 | releqi 5770 | . 2 ⊢ (Rel ∼ 𝐴 ↔ Rel ≀ (◡ E ↾ 𝐴)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Rel ∼ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: E cep 5572 ◡ccnv 5668 ↾ cres 5671 Rel wrel 5674 ≀ ccoss 37556 ∼ ccoels 37557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ss 3960 df-opab 5204 df-xp 5675 df-rel 5676 df-coss 37794 df-coels 37795 |
This theorem is referenced by: erimeq2 38061 |
Copyright terms: Public domain | W3C validator |