Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcoels Structured version   Visualization version   GIF version

Theorem relcoels 38532
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
relcoels Rel ∼ 𝐴

Proof of Theorem relcoels
StepHypRef Expression
1 relcoss 38531 . 2 Rel ≀ ( E ↾ 𝐴)
2 df-coels 38520 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32releqi 5722 . 2 (Rel ∼ 𝐴 ↔ Rel ≀ ( E ↾ 𝐴))
41, 3mpbir 231 1 Rel ∼ 𝐴
Colors of variables: wff setvar class
Syntax hints:   E cep 5518  ccnv 5618  cres 5621  Rel wrel 5624  ccoss 38228  ccoels 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5156  df-xp 5625  df-rel 5626  df-coss 38519  df-coels 38520
This theorem is referenced by:  erimeq2  38782
  Copyright terms: Public domain W3C validator