Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcoels Structured version   Visualization version   GIF version

Theorem relcoels 38422
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
relcoels Rel ∼ 𝐴

Proof of Theorem relcoels
StepHypRef Expression
1 relcoss 38421 . 2 Rel ≀ ( E ↾ 𝐴)
2 df-coels 38410 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32releqi 5743 . 2 (Rel ∼ 𝐴 ↔ Rel ≀ ( E ↾ 𝐴))
41, 3mpbir 231 1 Rel ∼ 𝐴
Colors of variables: wff setvar class
Syntax hints:   E cep 5540  ccnv 5640  cres 5643  Rel wrel 5646  ccoss 38176  ccoels 38177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-opab 5173  df-xp 5647  df-rel 5648  df-coss 38409  df-coels 38410
This theorem is referenced by:  erimeq2  38677
  Copyright terms: Public domain W3C validator