Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcoels Structured version   Visualization version   GIF version

Theorem relcoels 37294
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
relcoels Rel ∼ 𝐴

Proof of Theorem relcoels
StepHypRef Expression
1 relcoss 37293 . 2 Rel ≀ ( E ↾ 𝐴)
2 df-coels 37282 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32releqi 5778 . 2 (Rel ∼ 𝐴 ↔ Rel ≀ ( E ↾ 𝐴))
41, 3mpbir 230 1 Rel ∼ 𝐴
Colors of variables: wff setvar class
Syntax hints:   E cep 5580  ccnv 5676  cres 5679  Rel wrel 5682  ccoss 37043  ccoels 37044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683  df-rel 5684  df-coss 37281  df-coels 37282
This theorem is referenced by:  erimeq2  37548
  Copyright terms: Public domain W3C validator