Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoels | Structured version Visualization version GIF version |
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
Ref | Expression |
---|---|
relcoels | ⊢ Rel ∼ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss 36473 | . 2 ⊢ Rel ≀ (◡ E ↾ 𝐴) | |
2 | df-coels 36465 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
3 | 2 | releqi 5678 | . 2 ⊢ (Rel ∼ 𝐴 ↔ Rel ≀ (◡ E ↾ 𝐴)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Rel ∼ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: E cep 5485 ◡ccnv 5579 ↾ cres 5582 Rel wrel 5585 ≀ ccoss 36260 ∼ ccoels 36261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-coss 36464 df-coels 36465 |
This theorem is referenced by: erim2 36716 |
Copyright terms: Public domain | W3C validator |