![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoels | Structured version Visualization version GIF version |
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
Ref | Expression |
---|---|
relcoels | ⊢ Rel ∼ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss 37293 | . 2 ⊢ Rel ≀ (◡ E ↾ 𝐴) | |
2 | df-coels 37282 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
3 | 2 | releqi 5778 | . 2 ⊢ (Rel ∼ 𝐴 ↔ Rel ≀ (◡ E ↾ 𝐴)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Rel ∼ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: E cep 5580 ◡ccnv 5676 ↾ cres 5679 Rel wrel 5682 ≀ ccoss 37043 ∼ ccoels 37044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-opab 5212 df-xp 5683 df-rel 5684 df-coss 37281 df-coels 37282 |
This theorem is referenced by: erimeq2 37548 |
Copyright terms: Public domain | W3C validator |