| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoels | Structured version Visualization version GIF version | ||
| Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| Ref | Expression |
|---|---|
| relcoels | ⊢ Rel ∼ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoss 38414 | . 2 ⊢ Rel ≀ (◡ E ↾ 𝐴) | |
| 2 | df-coels 38403 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
| 3 | 2 | releqi 5740 | . 2 ⊢ (Rel ∼ 𝐴 ↔ Rel ≀ (◡ E ↾ 𝐴)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Rel ∼ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: E cep 5537 ◡ccnv 5637 ↾ cres 5640 Rel wrel 5643 ≀ ccoss 38169 ∼ ccoels 38170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-coss 38402 df-coels 38403 |
| This theorem is referenced by: erimeq2 38670 |
| Copyright terms: Public domain | W3C validator |