Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcoels Structured version   Visualization version   GIF version

Theorem relcoels 38400
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
relcoels Rel ∼ 𝐴

Proof of Theorem relcoels
StepHypRef Expression
1 relcoss 38399 . 2 Rel ≀ ( E ↾ 𝐴)
2 df-coels 38388 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32releqi 5767 . 2 (Rel ∼ 𝐴 ↔ Rel ≀ ( E ↾ 𝐴))
41, 3mpbir 231 1 Rel ∼ 𝐴
Colors of variables: wff setvar class
Syntax hints:   E cep 5563  ccnv 5664  cres 5667  Rel wrel 5670  ccoss 38157  ccoels 38158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-ss 3948  df-opab 5186  df-xp 5671  df-rel 5672  df-coss 38387  df-coels 38388
This theorem is referenced by:  erimeq2  38654
  Copyright terms: Public domain W3C validator