Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcoels Structured version   Visualization version   GIF version

Theorem relcoels 36474
Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
relcoels Rel ∼ 𝐴

Proof of Theorem relcoels
StepHypRef Expression
1 relcoss 36473 . 2 Rel ≀ ( E ↾ 𝐴)
2 df-coels 36465 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32releqi 5678 . 2 (Rel ∼ 𝐴 ↔ Rel ≀ ( E ↾ 𝐴))
41, 3mpbir 230 1 Rel ∼ 𝐴
Colors of variables: wff setvar class
Syntax hints:   E cep 5485  ccnv 5579  cres 5582  Rel wrel 5585  ccoss 36260  ccoels 36261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133  df-xp 5586  df-rel 5587  df-coss 36464  df-coels 36465
This theorem is referenced by:  erim2  36716
  Copyright terms: Public domain W3C validator