| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoels | Structured version Visualization version GIF version | ||
| Description: Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| Ref | Expression |
|---|---|
| relcoels | ⊢ Rel ∼ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoss 38421 | . 2 ⊢ Rel ≀ (◡ E ↾ 𝐴) | |
| 2 | df-coels 38410 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
| 3 | 2 | releqi 5743 | . 2 ⊢ (Rel ∼ 𝐴 ↔ Rel ≀ (◡ E ↾ 𝐴)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Rel ∼ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: E cep 5540 ◡ccnv 5640 ↾ cres 5643 Rel wrel 5646 ≀ ccoss 38176 ∼ ccoels 38177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-coss 38409 df-coels 38410 |
| This theorem is referenced by: erimeq2 38677 |
| Copyright terms: Public domain | W3C validator |