| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5742 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-rel 5648 |
| This theorem is referenced by: reliun 5782 reluni 5784 relint 5785 reldmmpo 7526 frrlem6 8273 tfrlem6 8353 relsdom 8928 0rest 17399 firest 17402 2oppchomf 17692 oppchofcl 18228 oyoncl 18238 releqg 19114 reldvdsr 20276 restbas 23052 hlimcaui 31172 gonan0 35386 satffunlem2lem2 35400 relbigcup 35892 fnsingle 35914 funimage 35923 colinrel 36052 brcnvrabga 38331 relcoels 38422 iscard4 43529 neicvgnvor 44112 xlimrel 45825 tposideq2 48881 reldmxpc 49239 reldmprcof1 49374 reldmlmd2 49646 reldmcmd2 49647 rellmd 49652 relcmd 49653 |
| Copyright terms: Public domain | W3C validator |