![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 5789 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 df-rel 5696 |
This theorem is referenced by: reliun 5829 reluni 5831 relint 5832 reldmmpo 7567 frrlem6 8315 wfrrelOLD 8353 tfrlem6 8421 relsdom 8991 0rest 17476 firest 17479 2oppchomf 17771 oppchofcl 18317 oyoncl 18327 releqg 19206 reldvdsr 20377 restbas 23182 hlimcaui 31265 gonan0 35377 satffunlem2lem2 35391 relbigcup 35879 fnsingle 35901 funimage 35910 colinrel 36039 brcnvrabga 38324 relcoels 38406 iscard4 43523 neicvgnvor 44106 xlimrel 45776 |
Copyright terms: Public domain | W3C validator |