Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 5677 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-rel 5587 |
This theorem is referenced by: reliun 5715 reluni 5717 relint 5718 reldmmpo 7386 frrlem6 8078 wfrrelOLD 8116 tfrlem6 8184 relsdom 8698 0rest 17057 firest 17060 2oppchomf 17352 oppchofcl 17894 oyoncl 17904 releqg 18718 reldvdsr 19801 restbas 22217 hlimcaui 29499 gonan0 33254 satffunlem2lem2 33268 relbigcup 34126 fnsingle 34148 funimage 34157 colinrel 34286 brcnvrabga 36404 relcoels 36474 iscard4 41038 neicvgnvor 41615 xlimrel 43251 |
Copyright terms: Public domain | W3C validator |