| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5731 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-rel 5638 |
| This theorem is referenced by: reliun 5770 reluni 5772 relint 5773 reldmmpo 7503 frrlem6 8247 tfrlem6 8327 relsdom 8902 0rest 17368 firest 17371 2oppchomf 17661 oppchofcl 18197 oyoncl 18207 releqg 19083 reldvdsr 20245 restbas 23021 hlimcaui 31138 gonan0 35352 satffunlem2lem2 35366 relbigcup 35858 fnsingle 35880 funimage 35889 colinrel 36018 brcnvrabga 38297 relcoels 38388 iscard4 43495 neicvgnvor 44078 xlimrel 45791 tposideq2 48850 reldmxpc 49208 reldmprcof1 49343 reldmlmd2 49615 reldmcmd2 49616 rellmd 49621 relcmd 49622 |
| Copyright terms: Public domain | W3C validator |