| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5766 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ss 3948 df-rel 5672 |
| This theorem is referenced by: reliun 5806 reluni 5808 relint 5809 reldmmpo 7549 frrlem6 8298 wfrrelOLD 8336 tfrlem6 8404 relsdom 8974 0rest 17445 firest 17448 2oppchomf 17738 oppchofcl 18275 oyoncl 18285 releqg 19162 reldvdsr 20328 restbas 23112 hlimcaui 31183 gonan0 35356 satffunlem2lem2 35370 relbigcup 35857 fnsingle 35879 funimage 35888 colinrel 36017 brcnvrabga 38302 relcoels 38384 iscard4 43508 neicvgnvor 44091 xlimrel 45792 tposideq2 48748 reldmxpc 48923 |
| Copyright terms: Public domain | W3C validator |