![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 5404 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 Rel wrel 5315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-in 3774 df-ss 3781 df-rel 5317 |
This theorem is referenced by: reliun 5441 reluni 5443 relint 5444 reldmmpt2 7003 wfrrel 7657 tfrlem6 7715 relsdom 8200 cda1dif 9284 0rest 16401 firest 16404 2oppchomf 16694 oppchofcl 17211 oyoncl 17221 releqg 17950 reldvdsr 18956 restbas 21287 hlimcaui 28609 frrlem6 32293 relbigcup 32508 fnsingle 32530 funimage 32539 colinrel 32668 cnfinltrel 33730 brcnvrabga 34595 relcoels 34664 neicvgnvor 39183 xlimrel 40777 |
Copyright terms: Public domain | W3C validator |