MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releqi Structured version   Visualization version   GIF version

Theorem releqi 5790
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
Hypothesis
Ref Expression
releqi.1 𝐴 = 𝐵
Assertion
Ref Expression
releqi (Rel 𝐴 ↔ Rel 𝐵)

Proof of Theorem releqi
StepHypRef Expression
1 releqi.1 . 2 𝐴 = 𝐵
2 releq 5789 . 2 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
31, 2ax-mp 5 1 (Rel 𝐴 ↔ Rel 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-ss 3980  df-rel 5696
This theorem is referenced by:  reliun  5829  reluni  5831  relint  5832  reldmmpo  7567  frrlem6  8315  wfrrelOLD  8353  tfrlem6  8421  relsdom  8991  0rest  17476  firest  17479  2oppchomf  17771  oppchofcl  18317  oyoncl  18327  releqg  19206  reldvdsr  20377  restbas  23182  hlimcaui  31265  gonan0  35377  satffunlem2lem2  35391  relbigcup  35879  fnsingle  35901  funimage  35910  colinrel  36039  brcnvrabga  38324  relcoels  38406  iscard4  43523  neicvgnvor  44106  xlimrel  45776
  Copyright terms: Public domain W3C validator