![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 5776 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-rel 5683 |
This theorem is referenced by: reliun 5816 reluni 5818 relint 5819 reldmmpo 7546 frrlem6 8282 wfrrelOLD 8320 tfrlem6 8388 relsdom 8952 0rest 17382 firest 17385 2oppchomf 17677 oppchofcl 18223 oyoncl 18233 releqg 19098 reldvdsr 20258 restbas 22982 hlimcaui 30923 gonan0 34848 satffunlem2lem2 34862 relbigcup 35340 fnsingle 35362 funimage 35371 colinrel 35500 brcnvrabga 37677 relcoels 37760 iscard4 42749 neicvgnvor 43332 xlimrel 44997 |
Copyright terms: Public domain | W3C validator |