| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5716 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 df-rel 5621 |
| This theorem is referenced by: reliun 5755 reluni 5757 relint 5758 reldmmpo 7480 frrlem6 8221 tfrlem6 8301 relsdom 8876 0rest 17333 firest 17336 2oppchomf 17630 oppchofcl 18166 oyoncl 18176 releqg 19087 reldvdsr 20278 restbas 23073 hlimcaui 31216 gonan0 35436 satffunlem2lem2 35450 relbigcup 35939 fnsingle 35961 funimage 35970 colinrel 36101 brcnvrabga 38384 relcoels 38536 iscard4 43636 neicvgnvor 44219 xlimrel 45928 tposideq2 48999 reldmxpc 49357 reldmprcof1 49492 reldmlmd2 49764 reldmcmd2 49765 rellmd 49770 relcmd 49771 |
| Copyright terms: Public domain | W3C validator |