![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 5800 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-rel 5707 |
This theorem is referenced by: reliun 5840 reluni 5842 relint 5843 reldmmpo 7584 frrlem6 8332 wfrrelOLD 8370 tfrlem6 8438 relsdom 9010 0rest 17489 firest 17492 2oppchomf 17784 oppchofcl 18330 oyoncl 18340 releqg 19215 reldvdsr 20386 restbas 23187 hlimcaui 31268 gonan0 35360 satffunlem2lem2 35374 relbigcup 35861 fnsingle 35883 funimage 35892 colinrel 36021 brcnvrabga 38298 relcoels 38380 iscard4 43495 neicvgnvor 44078 xlimrel 45741 |
Copyright terms: Public domain | W3C validator |