Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 5687 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-rel 5596 |
This theorem is referenced by: reliun 5726 reluni 5728 relint 5729 reldmmpo 7408 frrlem6 8107 wfrrelOLD 8145 tfrlem6 8213 relsdom 8740 0rest 17140 firest 17143 2oppchomf 17435 oppchofcl 17978 oyoncl 17988 releqg 18803 reldvdsr 19886 restbas 22309 hlimcaui 29598 gonan0 33354 satffunlem2lem2 33368 relbigcup 34199 fnsingle 34221 funimage 34230 colinrel 34359 brcnvrabga 36477 relcoels 36547 iscard4 41140 neicvgnvor 41726 xlimrel 43361 |
Copyright terms: Public domain | W3C validator |