| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5720 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 df-rel 5626 |
| This theorem is referenced by: reliun 5759 reluni 5761 relint 5762 reldmmpo 7483 frrlem6 8224 tfrlem6 8304 relsdom 8879 0rest 17333 firest 17336 2oppchomf 17630 oppchofcl 18166 oyoncl 18176 releqg 19054 reldvdsr 20245 restbas 23043 hlimcaui 31180 gonan0 35369 satffunlem2lem2 35383 relbigcup 35875 fnsingle 35897 funimage 35906 colinrel 36035 brcnvrabga 38314 relcoels 38405 iscard4 43510 neicvgnvor 44093 xlimrel 45805 tposideq2 48877 reldmxpc 49235 reldmprcof1 49370 reldmlmd2 49642 reldmcmd2 49643 rellmd 49648 relcmd 49649 |
| Copyright terms: Public domain | W3C validator |