| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5731 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-rel 5638 |
| This theorem is referenced by: reliun 5770 reluni 5772 relint 5773 reldmmpo 7503 frrlem6 8247 tfrlem6 8327 relsdom 8902 0rest 17368 firest 17371 2oppchomf 17665 oppchofcl 18201 oyoncl 18211 releqg 19089 reldvdsr 20280 restbas 23078 hlimcaui 31215 gonan0 35372 satffunlem2lem2 35386 relbigcup 35878 fnsingle 35900 funimage 35909 colinrel 36038 brcnvrabga 38317 relcoels 38408 iscard4 43515 neicvgnvor 44098 xlimrel 45811 tposideq2 48870 reldmxpc 49228 reldmprcof1 49363 reldmlmd2 49635 reldmcmd2 49636 rellmd 49641 relcmd 49642 |
| Copyright terms: Public domain | W3C validator |