| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5755 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-rel 5661 |
| This theorem is referenced by: reliun 5795 reluni 5797 relint 5798 reldmmpo 7541 frrlem6 8290 wfrrelOLD 8328 tfrlem6 8396 relsdom 8966 0rest 17443 firest 17446 2oppchomf 17736 oppchofcl 18272 oyoncl 18282 releqg 19158 reldvdsr 20320 restbas 23096 hlimcaui 31217 gonan0 35414 satffunlem2lem2 35428 relbigcup 35915 fnsingle 35937 funimage 35946 colinrel 36075 brcnvrabga 38360 relcoels 38442 iscard4 43557 neicvgnvor 44140 xlimrel 45849 tposideq2 48864 reldmxpc 49163 reldmprcof1 49291 reldmlmd2 49525 reldmcmd2 49526 rellmd 49529 relcmd 49530 |
| Copyright terms: Public domain | W3C validator |