| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
| Ref | Expression |
|---|---|
| releqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | releq 5739 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-rel 5645 |
| This theorem is referenced by: reliun 5779 reluni 5781 relint 5782 reldmmpo 7523 frrlem6 8270 tfrlem6 8350 relsdom 8925 0rest 17392 firest 17395 2oppchomf 17685 oppchofcl 18221 oyoncl 18231 releqg 19107 reldvdsr 20269 restbas 23045 hlimcaui 31165 gonan0 35379 satffunlem2lem2 35393 relbigcup 35885 fnsingle 35907 funimage 35916 colinrel 36045 brcnvrabga 38324 relcoels 38415 iscard4 43522 neicvgnvor 44105 xlimrel 45818 tposideq2 48877 reldmxpc 49235 reldmprcof1 49370 reldmlmd2 49642 reldmcmd2 49643 rellmd 49648 relcmd 49649 |
| Copyright terms: Public domain | W3C validator |