Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erimeq2 Structured version   Visualization version   GIF version

Theorem erimeq2 37353
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 37557 in a more convenient form , see also erimeq 37354). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
erimeq2 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))

Proof of Theorem erimeq2
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcoels 37099 . . . 4 Rel ∼ 𝐴
21a1i 11 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → Rel ∼ 𝐴)
3 eqvrelrel 37272 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
43ad2antrl 726 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → Rel 𝑅)
5 brcoels 37110 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝐴𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)))
65el2v 3481 . . . 4 (𝑥𝐴𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢))
7 simpll 765 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → EqvRel 𝑅)
8 simprl 769 . . . . . . . . . . . . 13 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢𝐴)
9 simplr 767 . . . . . . . . . . . . 13 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (dom 𝑅 / 𝑅) = 𝐴)
108, 9eleqtrrd 2835 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢 ∈ (dom 𝑅 / 𝑅))
11 simprr 771 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑥𝑢)
12 eqvrelqsel 37291 . . . . . . . . . . . 12 (( EqvRel 𝑅𝑢 ∈ (dom 𝑅 / 𝑅) ∧ 𝑥𝑢) → 𝑢 = [𝑥]𝑅)
137, 10, 11, 12syl3anc 1371 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢 = [𝑥]𝑅)
1413eleq2d 2818 . . . . . . . . . 10 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (𝑦𝑢𝑦 ∈ [𝑥]𝑅))
15 elecALTV 36939 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑥]𝑅𝑥𝑅𝑦))
1615el2v 3481 . . . . . . . . . 10 (𝑦 ∈ [𝑥]𝑅𝑥𝑅𝑦)
1714, 16bitrdi 286 . . . . . . . . 9 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (𝑦𝑢𝑥𝑅𝑦))
1817anassrs 468 . . . . . . . 8 (((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → (𝑦𝑢𝑥𝑅𝑦))
1918pm5.32da 579 . . . . . . 7 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑢𝐴) → ((𝑥𝑢𝑦𝑢) ↔ (𝑥𝑢𝑥𝑅𝑦)))
2019rexbidva 3175 . . . . . 6 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
2120adantl 482 . . . . 5 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
22 simpll 765 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → EqvRel 𝑅)
23 simpr 485 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → 𝑥𝑅𝑦)
2422, 23eqvrelcl 37287 . . . . . . . . . 10 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
2524adantll 712 . . . . . . . . 9 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
26 eqvrelim 37276 . . . . . . . . . . . . . 14 ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅)
2726ad2antrl 726 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → dom 𝑅 = ran 𝑅)
2827eleq2d 2818 . . . . . . . . . . . 12 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅))
29 dmqseqim2 37332 . . . . . . . . . . . . . 14 (𝑅𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝑥 ∈ ran 𝑅𝑥 𝐴))))
303, 29syl5 34 . . . . . . . . . . . . 13 (𝑅𝑉 → ( EqvRel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝑥 ∈ ran 𝑅𝑥 𝐴))))
3130imp32 419 . . . . . . . . . . . 12 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ ran 𝑅𝑥 𝐴))
3228, 31bitrd 278 . . . . . . . . . . 11 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅𝑥 𝐴))
33 eluni2 4905 . . . . . . . . . . 11 (𝑥 𝐴 ↔ ∃𝑢𝐴 𝑥𝑢)
3432, 33bitrdi 286 . . . . . . . . . 10 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅 ↔ ∃𝑢𝐴 𝑥𝑢))
3534adantr 481 . . . . . . . . 9 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → (𝑥 ∈ dom 𝑅 ↔ ∃𝑢𝐴 𝑥𝑢))
3625, 35mpbid 231 . . . . . . . 8 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → ∃𝑢𝐴 𝑥𝑢)
3736ex 413 . . . . . . 7 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 → ∃𝑢𝐴 𝑥𝑢))
3837pm4.71rd 563 . . . . . 6 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 ↔ (∃𝑢𝐴 𝑥𝑢𝑥𝑅𝑦)))
39 r19.41v 3187 . . . . . 6 (∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦) ↔ (∃𝑢𝐴 𝑥𝑢𝑥𝑅𝑦))
4038, 39bitr4di 288 . . . . 5 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
4121, 40bitr4d 281 . . . 4 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ 𝑥𝑅𝑦))
426, 41bitrid 282 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝐴𝑦𝑥𝑅𝑦))
432, 4, 42eqbrrdv 5785 . 2 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → ∼ 𝐴 = 𝑅)
4443ex 413 1 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3069  Vcvv 3473   cuni 4901   class class class wbr 5141  dom cdm 5669  ran crn 5670  Rel wrel 5674  [cec 8684   / cqs 8685  ccoels 36849   EqvRel weqvrel 36865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-id 5567  df-eprel 5573  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ec 8688  df-qs 8692  df-coss 37086  df-coels 37087  df-refrel 37187  df-symrel 37219  df-trrel 37249  df-eqvrel 37260
This theorem is referenced by:  erimeq  37354
  Copyright terms: Public domain W3C validator