Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erimeq2 Structured version   Visualization version   GIF version

Theorem erimeq2 38654
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 38858 in a more convenient form , see also erimeq 38655). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
erimeq2 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))

Proof of Theorem erimeq2
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcoels 38400 . . . 4 Rel ∼ 𝐴
21a1i 11 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → Rel ∼ 𝐴)
3 eqvrelrel 38573 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
43ad2antrl 728 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → Rel 𝑅)
5 brcoels 38411 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝐴𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)))
65el2v 3470 . . . 4 (𝑥𝐴𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢))
7 simpll 766 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → EqvRel 𝑅)
8 simprl 770 . . . . . . . . . . . . 13 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢𝐴)
9 simplr 768 . . . . . . . . . . . . 13 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (dom 𝑅 / 𝑅) = 𝐴)
108, 9eleqtrrd 2836 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢 ∈ (dom 𝑅 / 𝑅))
11 simprr 772 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑥𝑢)
12 eqvrelqsel 38592 . . . . . . . . . . . 12 (( EqvRel 𝑅𝑢 ∈ (dom 𝑅 / 𝑅) ∧ 𝑥𝑢) → 𝑢 = [𝑥]𝑅)
137, 10, 11, 12syl3anc 1372 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢 = [𝑥]𝑅)
1413eleq2d 2819 . . . . . . . . . 10 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (𝑦𝑢𝑦 ∈ [𝑥]𝑅))
15 elecALTV 38242 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑥]𝑅𝑥𝑅𝑦))
1615el2v 3470 . . . . . . . . . 10 (𝑦 ∈ [𝑥]𝑅𝑥𝑅𝑦)
1714, 16bitrdi 287 . . . . . . . . 9 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (𝑦𝑢𝑥𝑅𝑦))
1817anassrs 467 . . . . . . . 8 (((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → (𝑦𝑢𝑥𝑅𝑦))
1918pm5.32da 579 . . . . . . 7 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑢𝐴) → ((𝑥𝑢𝑦𝑢) ↔ (𝑥𝑢𝑥𝑅𝑦)))
2019rexbidva 3164 . . . . . 6 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
2120adantl 481 . . . . 5 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
22 simpll 766 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → EqvRel 𝑅)
23 simpr 484 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → 𝑥𝑅𝑦)
2422, 23eqvrelcl 38588 . . . . . . . . . 10 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
2524adantll 714 . . . . . . . . 9 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
26 eqvrelim 38577 . . . . . . . . . . . . . 14 ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅)
2726ad2antrl 728 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → dom 𝑅 = ran 𝑅)
2827eleq2d 2819 . . . . . . . . . . . 12 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅))
29 dmqseqim2 38633 . . . . . . . . . . . . . 14 (𝑅𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝑥 ∈ ran 𝑅𝑥 𝐴))))
303, 29syl5 34 . . . . . . . . . . . . 13 (𝑅𝑉 → ( EqvRel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝑥 ∈ ran 𝑅𝑥 𝐴))))
3130imp32 418 . . . . . . . . . . . 12 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ ran 𝑅𝑥 𝐴))
3228, 31bitrd 279 . . . . . . . . . . 11 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅𝑥 𝐴))
33 eluni2 4891 . . . . . . . . . . 11 (𝑥 𝐴 ↔ ∃𝑢𝐴 𝑥𝑢)
3432, 33bitrdi 287 . . . . . . . . . 10 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅 ↔ ∃𝑢𝐴 𝑥𝑢))
3534adantr 480 . . . . . . . . 9 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → (𝑥 ∈ dom 𝑅 ↔ ∃𝑢𝐴 𝑥𝑢))
3625, 35mpbid 232 . . . . . . . 8 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → ∃𝑢𝐴 𝑥𝑢)
3736ex 412 . . . . . . 7 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 → ∃𝑢𝐴 𝑥𝑢))
3837pm4.71rd 562 . . . . . 6 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 ↔ (∃𝑢𝐴 𝑥𝑢𝑥𝑅𝑦)))
39 r19.41v 3176 . . . . . 6 (∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦) ↔ (∃𝑢𝐴 𝑥𝑢𝑥𝑅𝑦))
4038, 39bitr4di 289 . . . . 5 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
4121, 40bitr4d 282 . . . 4 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ 𝑥𝑅𝑦))
426, 41bitrid 283 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝐴𝑦𝑥𝑅𝑦))
432, 4, 42eqbrrdv 5783 . 2 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → ∼ 𝐴 = 𝑅)
4443ex 412 1 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463   cuni 4887   class class class wbr 5123  dom cdm 5665  ran crn 5666  Rel wrel 5670  [cec 8725   / cqs 8726  ccoels 38158   EqvRel weqvrel 38174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-id 5558  df-eprel 5564  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-qs 8733  df-coss 38387  df-coels 38388  df-refrel 38488  df-symrel 38520  df-trrel 38550  df-eqvrel 38561
This theorem is referenced by:  erimeq  38655
  Copyright terms: Public domain W3C validator