Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erimeq2 Structured version   Visualization version   GIF version

Theorem erimeq2 36892
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 37096 in a more convenient form , see also erimeq 36893). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
erimeq2 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))

Proof of Theorem erimeq2
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcoels 36638 . . . 4 Rel ∼ 𝐴
21a1i 11 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → Rel ∼ 𝐴)
3 eqvrelrel 36811 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
43ad2antrl 726 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → Rel 𝑅)
5 brcoels 36649 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝐴𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)))
65el2v 3445 . . . 4 (𝑥𝐴𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢))
7 simpll 765 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → EqvRel 𝑅)
8 simprl 769 . . . . . . . . . . . . 13 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢𝐴)
9 simplr 767 . . . . . . . . . . . . 13 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (dom 𝑅 / 𝑅) = 𝐴)
108, 9eleqtrrd 2840 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢 ∈ (dom 𝑅 / 𝑅))
11 simprr 771 . . . . . . . . . . . 12 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑥𝑢)
12 eqvrelqsel 36830 . . . . . . . . . . . 12 (( EqvRel 𝑅𝑢 ∈ (dom 𝑅 / 𝑅) ∧ 𝑥𝑢) → 𝑢 = [𝑥]𝑅)
137, 10, 11, 12syl3anc 1371 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → 𝑢 = [𝑥]𝑅)
1413eleq2d 2822 . . . . . . . . . 10 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (𝑦𝑢𝑦 ∈ [𝑥]𝑅))
15 elecALTV 36476 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑥]𝑅𝑥𝑅𝑦))
1615el2v 3445 . . . . . . . . . 10 (𝑦 ∈ [𝑥]𝑅𝑥𝑅𝑦)
1714, 16bitrdi 287 . . . . . . . . 9 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ (𝑢𝐴𝑥𝑢)) → (𝑦𝑢𝑥𝑅𝑦))
1817anassrs 469 . . . . . . . 8 (((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → (𝑦𝑢𝑥𝑅𝑦))
1918pm5.32da 580 . . . . . . 7 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑢𝐴) → ((𝑥𝑢𝑦𝑢) ↔ (𝑥𝑢𝑥𝑅𝑦)))
2019rexbidva 3169 . . . . . 6 (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
2120adantl 483 . . . . 5 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
22 simpll 765 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → EqvRel 𝑅)
23 simpr 486 . . . . . . . . . . 11 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → 𝑥𝑅𝑦)
2422, 23eqvrelcl 36826 . . . . . . . . . 10 ((( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
2524adantll 712 . . . . . . . . 9 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
26 eqvrelim 36815 . . . . . . . . . . . . . 14 ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅)
2726ad2antrl 726 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → dom 𝑅 = ran 𝑅)
2827eleq2d 2822 . . . . . . . . . . . 12 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅))
29 dmqseqim2 36871 . . . . . . . . . . . . . 14 (𝑅𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝑥 ∈ ran 𝑅𝑥 𝐴))))
303, 29syl5 34 . . . . . . . . . . . . 13 (𝑅𝑉 → ( EqvRel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝑥 ∈ ran 𝑅𝑥 𝐴))))
3130imp32 420 . . . . . . . . . . . 12 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ ran 𝑅𝑥 𝐴))
3228, 31bitrd 279 . . . . . . . . . . 11 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅𝑥 𝐴))
33 eluni2 4848 . . . . . . . . . . 11 (𝑥 𝐴 ↔ ∃𝑢𝐴 𝑥𝑢)
3432, 33bitrdi 287 . . . . . . . . . 10 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥 ∈ dom 𝑅 ↔ ∃𝑢𝐴 𝑥𝑢))
3534adantr 482 . . . . . . . . 9 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → (𝑥 ∈ dom 𝑅 ↔ ∃𝑢𝐴 𝑥𝑢))
3625, 35mpbid 231 . . . . . . . 8 (((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) ∧ 𝑥𝑅𝑦) → ∃𝑢𝐴 𝑥𝑢)
3736ex 414 . . . . . . 7 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 → ∃𝑢𝐴 𝑥𝑢))
3837pm4.71rd 564 . . . . . 6 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 ↔ (∃𝑢𝐴 𝑥𝑢𝑥𝑅𝑦)))
39 r19.41v 3181 . . . . . 6 (∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦) ↔ (∃𝑢𝐴 𝑥𝑢𝑥𝑅𝑦))
4038, 39bitr4di 289 . . . . 5 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝑅𝑦 ↔ ∃𝑢𝐴 (𝑥𝑢𝑥𝑅𝑦)))
4121, 40bitr4d 282 . . . 4 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ 𝑥𝑅𝑦))
426, 41bitrid 283 . . 3 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → (𝑥𝐴𝑦𝑥𝑅𝑦))
432, 4, 42eqbrrdv 5715 . 2 ((𝑅𝑉 ∧ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) → ∼ 𝐴 = 𝑅)
4443ex 414 1 (𝑅𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wrex 3070  Vcvv 3437   cuni 4844   class class class wbr 5081  dom cdm 5600  ran crn 5601  Rel wrel 5605  [cec 8527   / cqs 8528  ccoels 36382   EqvRel weqvrel 36398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-coss 36625  df-coels 36626  df-refrel 36726  df-symrel 36758  df-trrel 36788  df-eqvrel 36799
This theorem is referenced by:  erimeq  36893
  Copyright terms: Public domain W3C validator