Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoss | Structured version Visualization version GIF version |
Description: Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
relcoss | ⊢ Rel ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 36464 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 class class class wbr 5070 Rel wrel 5585 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-coss 36464 |
This theorem is referenced by: relcoels 36474 cocossss 36486 cnvcosseq 36487 refrelcoss3 36508 symrelcoss3 36510 1cosscnvxrn 36520 eleccossin 36528 cosselrels 36541 cnvrefrelcoss2 36578 eqvrelcoss3 36658 |
Copyright terms: Public domain | W3C validator |