| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoss | Structured version Visualization version GIF version | ||
| Description: Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| relcoss | ⊢ Rel ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss 38454 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 2 | 1 | relopabiv 5760 | 1 ⊢ Rel ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 class class class wbr 5091 Rel wrel 5621 ≀ ccoss 38221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 df-coss 38454 |
| This theorem is referenced by: relcoels 38467 cocossss 38479 cnvcosseq 38480 refrelcoss3 38506 symrelcoss3 38508 1cosscnvxrn 38518 eleccossin 38526 cosselrels 38539 cnvrefrelcoss2 38580 eqvrelcoss3 38661 |
| Copyright terms: Public domain | W3C validator |