![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoss | Structured version Visualization version GIF version |
Description: Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
relcoss | ⊢ Rel ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 34663 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
2 | 1 | relopabi 5449 | 1 ⊢ Rel ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∃wex 1875 class class class wbr 4843 Rel wrel 5317 ≀ ccoss 34469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-opab 4906 df-xp 5318 df-rel 5319 df-coss 34663 |
This theorem is referenced by: relcoels 34673 cocossss 34685 cnvcosseq 34686 refrelcoss3 34707 symrelcoss3 34709 1cosscnvxrn 34719 eleccossin 34727 cosselrels 34740 cnvrefrelcoss2 34777 eqvrelcoss3 34853 |
Copyright terms: Public domain | W3C validator |