Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcoss Structured version   Visualization version   GIF version

Theorem relcoss 38402
Description: Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
relcoss Rel ≀ 𝑅

Proof of Theorem relcoss
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-coss 38390 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
21relopabiv 5767 1 Rel ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779   class class class wbr 5095  Rel wrel 5628  ccoss 38157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-ss 3922  df-opab 5158  df-xp 5629  df-rel 5630  df-coss 38390
This theorem is referenced by:  relcoels  38403  cocossss  38415  cnvcosseq  38416  refrelcoss3  38442  symrelcoss3  38444  1cosscnvxrn  38454  eleccossin  38462  cosselrels  38475  cnvrefrelcoss2  38516  eqvrelcoss3  38597
  Copyright terms: Public domain W3C validator