| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoss | Structured version Visualization version GIF version | ||
| Description: Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| relcoss | ⊢ Rel ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss 38409 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 class class class wbr 5110 Rel wrel 5646 ≀ ccoss 38176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-coss 38409 |
| This theorem is referenced by: relcoels 38422 cocossss 38434 cnvcosseq 38435 refrelcoss3 38461 symrelcoss3 38463 1cosscnvxrn 38473 eleccossin 38481 cosselrels 38494 cnvrefrelcoss2 38535 eqvrelcoss3 38616 |
| Copyright terms: Public domain | W3C validator |