![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoss | Structured version Visualization version GIF version |
Description: Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
relcoss | ⊢ Rel ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 38367 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 class class class wbr 5166 Rel wrel 5705 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-coss 38367 |
This theorem is referenced by: relcoels 38380 cocossss 38392 cnvcosseq 38393 refrelcoss3 38419 symrelcoss3 38421 1cosscnvxrn 38431 eleccossin 38439 cosselrels 38452 cnvrefrelcoss2 38493 eqvrelcoss3 38574 |
Copyright terms: Public domain | W3C validator |