| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcoss | Structured version Visualization version GIF version | ||
| Description: Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| relcoss | ⊢ Rel ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss 38402 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 class class class wbr 5107 Rel wrel 5643 ≀ ccoss 38169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-coss 38402 |
| This theorem is referenced by: relcoels 38415 cocossss 38427 cnvcosseq 38428 refrelcoss3 38454 symrelcoss3 38456 1cosscnvxrn 38466 eleccossin 38474 cosselrels 38487 cnvrefrelcoss2 38528 eqvrelcoss3 38609 |
| Copyright terms: Public domain | W3C validator |