| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsn | Structured version Visualization version GIF version | ||
| Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) |
| Ref | Expression |
|---|---|
| relsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| relsn | ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | relsng 5767 | . 2 ⊢ (𝐴 ∈ V → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 {csn 4592 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-sn 4593 df-rel 5648 |
| This theorem is referenced by: setscom 17157 setsid 17184 |
| Copyright terms: Public domain | W3C validator |