| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsn | Structured version Visualization version GIF version | ||
| Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) |
| Ref | Expression |
|---|---|
| relsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| relsn | ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | relsng 5780 | . 2 ⊢ (𝐴 ∈ V → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3459 {csn 4601 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-sn 4602 df-rel 5661 |
| This theorem is referenced by: setscom 17199 setsid 17226 |
| Copyright terms: Public domain | W3C validator |