MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsn Structured version   Visualization version   GIF version

Theorem relsn 5795
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1 𝐴 ∈ V
Assertion
Ref Expression
relsn (Rel {𝐴} ↔ 𝐴 ∈ (V × V))

Proof of Theorem relsn
StepHypRef Expression
1 relsn.1 . 2 𝐴 ∈ V
2 relsng 5792 . 2 (𝐴 ∈ V → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
31, 2ax-mp 5 1 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  Vcvv 3466  {csn 4621   × cxp 5665  Rel wrel 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3948  df-ss 3958  df-sn 4622  df-rel 5674
This theorem is referenced by:  setscom  17114  setsid  17142
  Copyright terms: Public domain W3C validator