MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsn Structured version   Visualization version   GIF version

Theorem relsn 5770
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1 𝐴 ∈ V
Assertion
Ref Expression
relsn (Rel {𝐴} ↔ 𝐴 ∈ (V × V))

Proof of Theorem relsn
StepHypRef Expression
1 relsn.1 . 2 𝐴 ∈ V
2 relsng 5767 . 2 (𝐴 ∈ V → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
31, 2ax-mp 5 1 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3450  {csn 4592   × cxp 5639  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-sn 4593  df-rel 5648
This theorem is referenced by:  setscom  17157  setsid  17184
  Copyright terms: Public domain W3C validator