Proof of Theorem setscom
Step | Hyp | Ref
| Expression |
1 | | rescom 5914 |
. . . . . 6
⊢ ((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) = ((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) |
2 | 1 | uneq1i 4097 |
. . . . 5
⊢ (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {〈𝐴, 𝐶〉}) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) |
3 | 2 | uneq1i 4097 |
. . . 4
⊢ ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {〈𝐴, 𝐶〉}) ∪ {〈𝐵, 𝐷〉}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) ∪ {〈𝐵, 𝐷〉}) |
4 | | un23 4106 |
. . . 4
⊢ ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) ∪ {〈𝐵, 𝐷〉}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐵, 𝐷〉}) ∪ {〈𝐴, 𝐶〉}) |
5 | 3, 4 | eqtri 2767 |
. . 3
⊢ ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {〈𝐴, 𝐶〉}) ∪ {〈𝐵, 𝐷〉}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐵, 𝐷〉}) ∪ {〈𝐴, 𝐶〉}) |
6 | | setsval 16849 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
7 | 6 | ad2ant2r 743 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
8 | 7 | reseq1d 5887 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐴, 𝐶〉) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) ↾ (V ∖ {𝐵}))) |
9 | | resundir 5903 |
. . . . . 6
⊢ (((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ ({〈𝐴, 𝐶〉} ↾ (V ∖ {𝐵}))) |
10 | | setscom.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
11 | | elex 3448 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) |
12 | 11 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → 𝐶 ∈ V) |
13 | | opelxpi 5625 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → 〈𝐴, 𝐶〉 ∈ (V ×
V)) |
14 | 10, 12, 13 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → 〈𝐴, 𝐶〉 ∈ (V ×
V)) |
15 | | opex 5381 |
. . . . . . . . . 10
⊢
〈𝐴, 𝐶〉 ∈ V |
16 | 15 | relsn 5711 |
. . . . . . . . 9
⊢ (Rel
{〈𝐴, 𝐶〉} ↔ 〈𝐴, 𝐶〉 ∈ (V ×
V)) |
17 | 14, 16 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → Rel {〈𝐴, 𝐶〉}) |
18 | | dmsnopss 6114 |
. . . . . . . . 9
⊢ dom
{〈𝐴, 𝐶〉} ⊆ {𝐴} |
19 | | disjsn2 4653 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
20 | 19 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ({𝐴} ∩ {𝐵}) = ∅) |
21 | | disj2 4396 |
. . . . . . . . . 10
⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴} ⊆ (V ∖ {𝐵})) |
22 | 20, 21 | sylib 217 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → {𝐴} ⊆ (V ∖ {𝐵})) |
23 | 18, 22 | sstrid 3936 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → dom {〈𝐴, 𝐶〉} ⊆ (V ∖ {𝐵})) |
24 | | relssres 5929 |
. . . . . . . 8
⊢ ((Rel
{〈𝐴, 𝐶〉} ∧ dom {〈𝐴, 𝐶〉} ⊆ (V ∖ {𝐵})) → ({〈𝐴, 𝐶〉} ↾ (V ∖ {𝐵})) = {〈𝐴, 𝐶〉}) |
25 | 17, 23, 24 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ({〈𝐴, 𝐶〉} ↾ (V ∖ {𝐵})) = {〈𝐴, 𝐶〉}) |
26 | 25 | uneq2d 4101 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ ({〈𝐴, 𝐶〉} ↾ (V ∖ {𝐵}))) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {〈𝐴, 𝐶〉})) |
27 | 9, 26 | eqtrid 2791 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {〈𝐴, 𝐶〉})) |
28 | 8, 27 | eqtrd 2779 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐴, 𝐶〉) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {〈𝐴, 𝐶〉})) |
29 | 28 | uneq1d 4100 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (((𝑆 sSet 〈𝐴, 𝐶〉) ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉}) = ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {〈𝐴, 𝐶〉}) ∪ {〈𝐵, 𝐷〉})) |
30 | | setsval 16849 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐷 ∈ 𝑋) → (𝑆 sSet 〈𝐵, 𝐷〉) = ((𝑆 ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉})) |
31 | 30 | reseq1d 5887 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐷 ∈ 𝑋) → ((𝑆 sSet 〈𝐵, 𝐷〉) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉}) ↾ (V ∖ {𝐴}))) |
32 | 31 | ad2ant2rl 745 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐵, 𝐷〉) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉}) ↾ (V ∖ {𝐴}))) |
33 | | resundir 5903 |
. . . . . 6
⊢ (((𝑆 ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐵, 𝐷〉} ↾ (V ∖ {𝐴}))) |
34 | | setscom.2 |
. . . . . . . . . 10
⊢ 𝐵 ∈ V |
35 | | elex 3448 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑋 → 𝐷 ∈ V) |
36 | 35 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → 𝐷 ∈ V) |
37 | | opelxpi 5625 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V) → 〈𝐵, 𝐷〉 ∈ (V ×
V)) |
38 | 34, 36, 37 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → 〈𝐵, 𝐷〉 ∈ (V ×
V)) |
39 | | opex 5381 |
. . . . . . . . . 10
⊢
〈𝐵, 𝐷〉 ∈ V |
40 | 39 | relsn 5711 |
. . . . . . . . 9
⊢ (Rel
{〈𝐵, 𝐷〉} ↔ 〈𝐵, 𝐷〉 ∈ (V ×
V)) |
41 | 38, 40 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → Rel {〈𝐵, 𝐷〉}) |
42 | | dmsnopss 6114 |
. . . . . . . . 9
⊢ dom
{〈𝐵, 𝐷〉} ⊆ {𝐵} |
43 | | ssv 3949 |
. . . . . . . . . . 11
⊢ {𝐴} ⊆ V |
44 | | ssv 3949 |
. . . . . . . . . . 11
⊢ {𝐵} ⊆ V |
45 | | ssconb 4076 |
. . . . . . . . . . 11
⊢ (({𝐴} ⊆ V ∧ {𝐵} ⊆ V) → ({𝐴} ⊆ (V ∖ {𝐵}) ↔ {𝐵} ⊆ (V ∖ {𝐴}))) |
46 | 43, 44, 45 | mp2an 688 |
. . . . . . . . . 10
⊢ ({𝐴} ⊆ (V ∖ {𝐵}) ↔ {𝐵} ⊆ (V ∖ {𝐴})) |
47 | 22, 46 | sylib 217 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → {𝐵} ⊆ (V ∖ {𝐴})) |
48 | 42, 47 | sstrid 3936 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → dom {〈𝐵, 𝐷〉} ⊆ (V ∖ {𝐴})) |
49 | | relssres 5929 |
. . . . . . . 8
⊢ ((Rel
{〈𝐵, 𝐷〉} ∧ dom {〈𝐵, 𝐷〉} ⊆ (V ∖ {𝐴})) → ({〈𝐵, 𝐷〉} ↾ (V ∖ {𝐴})) = {〈𝐵, 𝐷〉}) |
50 | 41, 48, 49 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ({〈𝐵, 𝐷〉} ↾ (V ∖ {𝐴})) = {〈𝐵, 𝐷〉}) |
51 | 50 | uneq2d 4101 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐵, 𝐷〉} ↾ (V ∖ {𝐴}))) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐵, 𝐷〉})) |
52 | 33, 51 | eqtrid 2791 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (((𝑆 ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐵, 𝐷〉})) |
53 | 32, 52 | eqtrd 2779 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐵, 𝐷〉) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐵, 𝐷〉})) |
54 | 53 | uneq1d 4100 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (((𝑆 sSet 〈𝐵, 𝐷〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {〈𝐵, 𝐷〉}) ∪ {〈𝐴, 𝐶〉})) |
55 | 5, 29, 54 | 3eqtr4a 2805 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → (((𝑆 sSet 〈𝐴, 𝐶〉) ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉}) = (((𝑆 sSet 〈𝐵, 𝐷〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
56 | | ovex 7301 |
. . 3
⊢ (𝑆 sSet 〈𝐴, 𝐶〉) ∈ V |
57 | | simprr 769 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → 𝐷 ∈ 𝑋) |
58 | | setsval 16849 |
. . 3
⊢ (((𝑆 sSet 〈𝐴, 𝐶〉) ∈ V ∧ 𝐷 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐶〉) sSet 〈𝐵, 𝐷〉) = (((𝑆 sSet 〈𝐴, 𝐶〉) ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉})) |
59 | 56, 57, 58 | sylancr 586 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐴, 𝐶〉) sSet 〈𝐵, 𝐷〉) = (((𝑆 sSet 〈𝐴, 𝐶〉) ↾ (V ∖ {𝐵})) ∪ {〈𝐵, 𝐷〉})) |
60 | | ovex 7301 |
. . 3
⊢ (𝑆 sSet 〈𝐵, 𝐷〉) ∈ V |
61 | | simprl 767 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → 𝐶 ∈ 𝑊) |
62 | | setsval 16849 |
. . 3
⊢ (((𝑆 sSet 〈𝐵, 𝐷〉) ∈ V ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐵, 𝐷〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐵, 𝐷〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
63 | 60, 61, 62 | sylancr 586 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐵, 𝐷〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐵, 𝐷〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
64 | 55, 59, 63 | 3eqtr4d 2789 |
1
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐴, 𝐶〉) sSet 〈𝐵, 𝐷〉) = ((𝑆 sSet 〈𝐵, 𝐷〉) sSet 〈𝐴, 𝐶〉)) |