MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsng Structured version   Visualization version   GIF version

Theorem relsng 5745
Description: A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 5626 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 snssg 4735 . 2 (𝐴𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)))
31, 2bitr4id 290 1 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  Vcvv 3436  wss 3897  {csn 4575   × cxp 5617  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-sn 4576  df-rel 5626
This theorem is referenced by:  relsnb  5746  relsnopg  5747  relsn  5748  relsn2  6165
  Copyright terms: Public domain W3C validator