![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsng | Structured version Visualization version GIF version |
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
relsng | ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4504 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))) | |
2 | df-rel 5320 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
3 | 1, 2 | syl6rbbr 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2157 Vcvv 3386 ⊆ wss 3770 {csn 4369 × cxp 5311 Rel wrel 5318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-v 3388 df-in 3777 df-ss 3784 df-sn 4370 df-rel 5320 |
This theorem is referenced by: relsnopg 5429 relsn 5430 relsn2 5822 |
Copyright terms: Public domain | W3C validator |