MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsng Structured version   Visualization version   GIF version

Theorem relsng 5739
Description: A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsng (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))

Proof of Theorem relsng
StepHypRef Expression
1 df-rel 5621 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 snssg 4734 . 2 (𝐴𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)))
31, 2bitr4id 290 1 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2110  Vcvv 3434  wss 3900  {csn 4574   × cxp 5612  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-ss 3917  df-sn 4575  df-rel 5621
This theorem is referenced by:  relsnb  5740  relsnopg  5741  relsn  5742  relsn2  6156
  Copyright terms: Public domain W3C validator