| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsng | Structured version Visualization version GIF version | ||
| Description: A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| relsng | ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5672 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
| 2 | snssg 4763 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 {csn 4606 × cxp 5663 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-sn 4607 df-rel 5672 |
| This theorem is referenced by: relsnb 5792 relsnopg 5793 relsn 5794 relsn2 6212 |
| Copyright terms: Public domain | W3C validator |