![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsng | Structured version Visualization version GIF version |
Description: A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
relsng | ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5685 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
2 | snssg 4788 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))) | |
3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 Vcvv 3471 ⊆ wss 3947 {csn 4629 × cxp 5676 Rel wrel 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-sn 4630 df-rel 5685 |
This theorem is referenced by: relsnb 5804 relsnopg 5805 relsn 5806 relsn2 6216 |
Copyright terms: Public domain | W3C validator |