MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsid Structured version   Visualization version   GIF version

Theorem setsid 17136
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
Assertion
Ref Expression
setsid ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))

Proof of Theorem setsid
StepHypRef Expression
1 setsval 17096 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩) = ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
21fveq2d 6830 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)) = (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})))
3 setsid.e . . 3 𝐸 = Slot (𝐸‘ndx)
4 resexg 5982 . . . . 5 (𝑊𝐴 → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
54adantr 480 . . . 4 ((𝑊𝐴𝐶𝑉) → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
6 snex 5378 . . . 4 {⟨(𝐸‘ndx), 𝐶⟩} ∈ V
7 unexg 7683 . . . 4 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V ∧ {⟨(𝐸‘ndx), 𝐶⟩} ∈ V) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
85, 6, 7sylancl 586 . . 3 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
93, 8strfvnd 17114 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
10 fvex 6839 . . . . . 6 (𝐸‘ndx) ∈ V
1110snid 4616 . . . . 5 (𝐸‘ndx) ∈ {(𝐸‘ndx)}
12 fvres 6845 . . . . 5 ((𝐸‘ndx) ∈ {(𝐸‘ndx)} → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . 4 ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx))
14 resres 5947 . . . . . . . . 9 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}))
15 disjdifr 4426 . . . . . . . . . . 11 ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}) = ∅
1615reseq2i 5931 . . . . . . . . . 10 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = (𝑊 ↾ ∅)
17 res0 5938 . . . . . . . . . 10 (𝑊 ↾ ∅) = ∅
1816, 17eqtri 2752 . . . . . . . . 9 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = ∅
1914, 18eqtri 2752 . . . . . . . 8 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅
2019a1i 11 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅)
21 elex 3459 . . . . . . . . . . 11 (𝐶𝑉𝐶 ∈ V)
2221adantl 481 . . . . . . . . . 10 ((𝑊𝐴𝐶𝑉) → 𝐶 ∈ V)
23 opelxpi 5660 . . . . . . . . . 10 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
2410, 22, 23sylancr 587 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
25 opex 5411 . . . . . . . . . 10 ⟨(𝐸‘ndx), 𝐶⟩ ∈ V
2625relsn 5751 . . . . . . . . 9 (Rel {⟨(𝐸‘ndx), 𝐶⟩} ↔ ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
2724, 26sylibr 234 . . . . . . . 8 ((𝑊𝐴𝐶𝑉) → Rel {⟨(𝐸‘ndx), 𝐶⟩})
28 dmsnopss 6167 . . . . . . . 8 dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}
29 relssres 5977 . . . . . . . 8 ((Rel {⟨(𝐸‘ndx), 𝐶⟩} ∧ dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3027, 28, 29sylancl 586 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3120, 30uneq12d 4122 . . . . . 6 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)})) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
32 resundir 5949 . . . . . 6 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}))
33 un0 4347 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = {⟨(𝐸‘ndx), 𝐶⟩}
34 uncom 4111 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
3533, 34eqtr3i 2754 . . . . . 6 {⟨(𝐸‘ndx), 𝐶⟩} = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
3631, 32, 353eqtr4g 2789 . . . . 5 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3736fveq1d 6828 . . . 4 ((𝑊𝐴𝐶𝑉) → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
3813, 37eqtr3id 2778 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
3910a1i 11 . . . 4 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ V)
40 fvsng 7120 . . . 4 (((𝐸‘ndx) ∈ V ∧ 𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
4139, 40sylancom 588 . . 3 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
4238, 41eqtrd 2764 . 2 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = 𝐶)
432, 9, 423eqtrrd 2769 1 ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  cop 4585   × cxp 5621  dom cdm 5623  cres 5625  Rel wrel 5628  cfv 6486  (class class class)co 7353   sSet csts 17092  Slot cslot 17110  ndxcnx 17122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-sets 17093  df-slot 17111
This theorem is referenced by:  ressbas  17165  oppchomfval  17638  oppccofval  17640  reschom  17755  oduleval  18213  oppgplusfval  19245  mgpplusg  20047  opprmulfval  20242  rmodislmod  20851  srasca  21102  sravsca  21103  sraip  21104  zlmsca  21445  zlmvsca  21446  znle  21461  thloc  21624  opsrle  21970  matmulr  22341  tuslem  24170  setsmstset  24381  tngds  24552  tngtset  24553  ttgval  28838  setsiedg  28999  resvsca  33280  hlhilnvl  41929  mnringmulrd  44196  cznrng  48246  cznnring  48247  prstchomval  49545  prstcthin  49547
  Copyright terms: Public domain W3C validator