MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsid Structured version   Visualization version   GIF version

Theorem setsid 16909
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
Assertion
Ref Expression
setsid ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))

Proof of Theorem setsid
StepHypRef Expression
1 setsval 16868 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩) = ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
21fveq2d 6778 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)) = (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})))
3 setsid.e . . 3 𝐸 = Slot (𝐸‘ndx)
4 resexg 5937 . . . . 5 (𝑊𝐴 → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
54adantr 481 . . . 4 ((𝑊𝐴𝐶𝑉) → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
6 snex 5354 . . . 4 {⟨(𝐸‘ndx), 𝐶⟩} ∈ V
7 unexg 7599 . . . 4 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V ∧ {⟨(𝐸‘ndx), 𝐶⟩} ∈ V) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
85, 6, 7sylancl 586 . . 3 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
93, 8strfvnd 16886 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
10 fvex 6787 . . . . . 6 (𝐸‘ndx) ∈ V
1110snid 4597 . . . . 5 (𝐸‘ndx) ∈ {(𝐸‘ndx)}
12 fvres 6793 . . . . 5 ((𝐸‘ndx) ∈ {(𝐸‘ndx)} → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . 4 ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx))
14 resres 5904 . . . . . . . . 9 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}))
15 disjdifr 4406 . . . . . . . . . . 11 ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}) = ∅
1615reseq2i 5888 . . . . . . . . . 10 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = (𝑊 ↾ ∅)
17 res0 5895 . . . . . . . . . 10 (𝑊 ↾ ∅) = ∅
1816, 17eqtri 2766 . . . . . . . . 9 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = ∅
1914, 18eqtri 2766 . . . . . . . 8 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅
2019a1i 11 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅)
21 elex 3450 . . . . . . . . . . 11 (𝐶𝑉𝐶 ∈ V)
2221adantl 482 . . . . . . . . . 10 ((𝑊𝐴𝐶𝑉) → 𝐶 ∈ V)
23 opelxpi 5626 . . . . . . . . . 10 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
2410, 22, 23sylancr 587 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
25 opex 5379 . . . . . . . . . 10 ⟨(𝐸‘ndx), 𝐶⟩ ∈ V
2625relsn 5714 . . . . . . . . 9 (Rel {⟨(𝐸‘ndx), 𝐶⟩} ↔ ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
2724, 26sylibr 233 . . . . . . . 8 ((𝑊𝐴𝐶𝑉) → Rel {⟨(𝐸‘ndx), 𝐶⟩})
28 dmsnopss 6117 . . . . . . . 8 dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}
29 relssres 5932 . . . . . . . 8 ((Rel {⟨(𝐸‘ndx), 𝐶⟩} ∧ dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3027, 28, 29sylancl 586 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3120, 30uneq12d 4098 . . . . . 6 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)})) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
32 resundir 5906 . . . . . 6 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}))
33 un0 4324 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = {⟨(𝐸‘ndx), 𝐶⟩}
34 uncom 4087 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
3533, 34eqtr3i 2768 . . . . . 6 {⟨(𝐸‘ndx), 𝐶⟩} = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
3631, 32, 353eqtr4g 2803 . . . . 5 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3736fveq1d 6776 . . . 4 ((𝑊𝐴𝐶𝑉) → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
3813, 37eqtr3id 2792 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
3910a1i 11 . . . 4 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ V)
40 fvsng 7052 . . . 4 (((𝐸‘ndx) ∈ V ∧ 𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
4139, 40sylancom 588 . . 3 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
4238, 41eqtrd 2778 . 2 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = 𝐶)
432, 9, 423eqtrrd 2783 1 ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567   × cxp 5587  dom cdm 5589  cres 5591  Rel wrel 5594  cfv 6433  (class class class)co 7275   sSet csts 16864  Slot cslot 16882  ndxcnx 16894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-sets 16865  df-slot 16883
This theorem is referenced by:  ressbas  16947  ressbasOLD  16948  oppchomfval  17423  oppchomfvalOLD  17424  oppccofval  17426  reschom  17543  oduleval  18007  oppgplusfval  18952  mgpplusg  19724  opprmulfval  19864  rmodislmod  20191  rmodislmodOLD  20192  srasca  20447  srascaOLD  20448  sravsca  20449  sravscaOLD  20450  sraip  20451  zlmsca  20726  zlmvsca  20727  znle  20740  thloc  20906  opsrle  21248  matmulr  21587  tuslem  23418  tuslemOLD  23419  setsmstset  23632  tngds  23811  tngdsOLD  23812  tngtset  23813  ttgval  27236  ttgvalOLD  27237  setsiedg  27406  resvsca  31529  hlhilnvl  39968  mnringmulrd  41839  cznrng  45513  cznnring  45514  prstchomval  46355  prstcthin  46357
  Copyright terms: Public domain W3C validator