MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsid Structured version   Visualization version   GIF version

Theorem setsid 17184
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
setsid.e 𝐸 = Slot (𝐸‘ndx)
Assertion
Ref Expression
setsid ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))

Proof of Theorem setsid
StepHypRef Expression
1 setsval 17144 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩) = ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
21fveq2d 6865 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)) = (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})))
3 setsid.e . . 3 𝐸 = Slot (𝐸‘ndx)
4 resexg 6001 . . . . 5 (𝑊𝐴 → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
54adantr 480 . . . 4 ((𝑊𝐴𝐶𝑉) → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
6 snex 5394 . . . 4 {⟨(𝐸‘ndx), 𝐶⟩} ∈ V
7 unexg 7722 . . . 4 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V ∧ {⟨(𝐸‘ndx), 𝐶⟩} ∈ V) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
85, 6, 7sylancl 586 . . 3 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
93, 8strfvnd 17162 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
10 fvex 6874 . . . . . 6 (𝐸‘ndx) ∈ V
1110snid 4629 . . . . 5 (𝐸‘ndx) ∈ {(𝐸‘ndx)}
12 fvres 6880 . . . . 5 ((𝐸‘ndx) ∈ {(𝐸‘ndx)} → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
1311, 12ax-mp 5 . . . 4 ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx))
14 resres 5966 . . . . . . . . 9 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}))
15 disjdifr 4439 . . . . . . . . . . 11 ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}) = ∅
1615reseq2i 5950 . . . . . . . . . 10 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = (𝑊 ↾ ∅)
17 res0 5957 . . . . . . . . . 10 (𝑊 ↾ ∅) = ∅
1816, 17eqtri 2753 . . . . . . . . 9 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = ∅
1914, 18eqtri 2753 . . . . . . . 8 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅
2019a1i 11 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅)
21 elex 3471 . . . . . . . . . . 11 (𝐶𝑉𝐶 ∈ V)
2221adantl 481 . . . . . . . . . 10 ((𝑊𝐴𝐶𝑉) → 𝐶 ∈ V)
23 opelxpi 5678 . . . . . . . . . 10 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
2410, 22, 23sylancr 587 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
25 opex 5427 . . . . . . . . . 10 ⟨(𝐸‘ndx), 𝐶⟩ ∈ V
2625relsn 5770 . . . . . . . . 9 (Rel {⟨(𝐸‘ndx), 𝐶⟩} ↔ ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
2724, 26sylibr 234 . . . . . . . 8 ((𝑊𝐴𝐶𝑉) → Rel {⟨(𝐸‘ndx), 𝐶⟩})
28 dmsnopss 6190 . . . . . . . 8 dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}
29 relssres 5996 . . . . . . . 8 ((Rel {⟨(𝐸‘ndx), 𝐶⟩} ∧ dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3027, 28, 29sylancl 586 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3120, 30uneq12d 4135 . . . . . 6 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)})) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
32 resundir 5968 . . . . . 6 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}))
33 un0 4360 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = {⟨(𝐸‘ndx), 𝐶⟩}
34 uncom 4124 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
3533, 34eqtr3i 2755 . . . . . 6 {⟨(𝐸‘ndx), 𝐶⟩} = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
3631, 32, 353eqtr4g 2790 . . . . 5 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
3736fveq1d 6863 . . . 4 ((𝑊𝐴𝐶𝑉) → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
3813, 37eqtr3id 2779 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
3910a1i 11 . . . 4 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ V)
40 fvsng 7157 . . . 4 (((𝐸‘ndx) ∈ V ∧ 𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
4139, 40sylancom 588 . . 3 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
4238, 41eqtrd 2765 . 2 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = 𝐶)
432, 9, 423eqtrrd 2770 1 ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592  cop 4598   × cxp 5639  dom cdm 5641  cres 5643  Rel wrel 5646  cfv 6514  (class class class)co 7390   sSet csts 17140  Slot cslot 17158  ndxcnx 17170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-sets 17141  df-slot 17159
This theorem is referenced by:  ressbas  17213  oppchomfval  17682  oppccofval  17684  reschom  17799  oduleval  18257  oppgplusfval  19287  mgpplusg  20060  opprmulfval  20255  rmodislmod  20843  srasca  21094  sravsca  21095  sraip  21096  zlmsca  21437  zlmvsca  21438  znle  21453  thloc  21615  opsrle  21961  matmulr  22332  tuslem  24161  setsmstset  24372  tngds  24543  tngtset  24544  ttgval  28809  setsiedg  28970  resvsca  33311  hlhilnvl  41951  mnringmulrd  44219  cznrng  48253  cznnring  48254  prstchomval  49552  prstcthin  49554
  Copyright terms: Public domain W3C validator