| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsnopg | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| relsnopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {〈𝐴, 𝐵〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvvg 5679 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 2 | opex 5424 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | relsng 5764 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ V → (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V))) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V))) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {〈𝐴, 𝐵〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: relsnop 5768 cnvsng 6196 |
| Copyright terms: Public domain | W3C validator |