MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsnopg Structured version   Visualization version   GIF version

Theorem relsnopg 5713
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsnopg ((𝐴𝑉𝐵𝑊) → Rel {⟨𝐴, 𝐵⟩})

Proof of Theorem relsnopg
StepHypRef Expression
1 opelvvg 5629 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
2 opex 5379 . . 3 𝐴, 𝐵⟩ ∈ V
3 relsng 5711 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (Rel {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ (V × V)))
42, 3mp1i 13 . 2 ((𝐴𝑉𝐵𝑊) → (Rel {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ (V × V)))
51, 4mpbird 256 1 ((𝐴𝑉𝐵𝑊) → Rel {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  {csn 4561  cop 4567   × cxp 5587  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  relsnop  5715  cnvsng  6126
  Copyright terms: Public domain W3C validator