| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsnop | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| relsn.1 | ⊢ 𝐴 ∈ V |
| relsnop.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| relsnop | ⊢ Rel {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | relsnop.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | relsnopg 5742 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Rel {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ Rel {〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 {csn 4573 〈cop 4579 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: fsn 7068 imasaddfnlem 17432 ex-res 30421 0funcg 49196 0funcALT 49199 functermc2 49620 |
| Copyright terms: Public domain | W3C validator |