Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsnop | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
relsnop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
relsnop | ⊢ Rel {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | relsnop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | relsnopg 5702 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Rel {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ Rel {〈𝐴, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: fsn 6989 imasaddfnlem 17156 ex-res 28706 |
Copyright terms: Public domain | W3C validator |