![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsnop | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
relsnop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
relsnop | ⊢ Rel {⟨𝐴, 𝐵⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | relsnop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | relsnopg 5796 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Rel {⟨𝐴, 𝐵⟩}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ Rel {⟨𝐴, 𝐵⟩} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3468 {csn 4623 ⟨cop 4629 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-opab 5204 df-xp 5675 df-rel 5676 |
This theorem is referenced by: fsn 7128 imasaddfnlem 17481 ex-res 30199 |
Copyright terms: Public domain | W3C validator |