MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsnop Structured version   Visualization version   GIF version

Theorem relsnop 5734
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1 𝐴 ∈ V
relsnop.2 𝐵 ∈ V
Assertion
Ref Expression
relsnop Rel {⟨𝐴, 𝐵⟩}

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . 2 𝐴 ∈ V
2 relsnop.2 . 2 𝐵 ∈ V
3 relsnopg 5732 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Rel {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 689 1 Rel {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3441  {csn 4571  cop 4577  Rel wrel 5612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-opab 5150  df-xp 5613  df-rel 5614
This theorem is referenced by:  fsn  7046  imasaddfnlem  17309  ex-res  28914
  Copyright terms: Public domain W3C validator