Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsnop | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
relsnop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
relsnop | ⊢ Rel {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | relsnop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | relsnopg 5732 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Rel {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ Rel {〈𝐴, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 {csn 4571 〈cop 4577 Rel wrel 5612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5150 df-xp 5613 df-rel 5614 |
This theorem is referenced by: fsn 7046 imasaddfnlem 17309 ex-res 28914 |
Copyright terms: Public domain | W3C validator |