![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsnop | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
relsnop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
relsnop | ⊢ Rel {⟨𝐴, 𝐵⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | relsnop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | relsnopg 5764 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Rel {⟨𝐴, 𝐵⟩}) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ Rel {⟨𝐴, 𝐵⟩} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3448 {csn 4591 ⟨cop 4597 Rel wrel 5643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5173 df-xp 5644 df-rel 5645 |
This theorem is referenced by: fsn 7086 imasaddfnlem 17417 ex-res 29427 |
Copyright terms: Public domain | W3C validator |