MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsnop Structured version   Visualization version   GIF version

Theorem relsnop 5766
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1 𝐴 ∈ V
relsnop.2 𝐵 ∈ V
Assertion
Ref Expression
relsnop Rel {⟨𝐴, 𝐵⟩}

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . 2 𝐴 ∈ V
2 relsnop.2 . 2 𝐵 ∈ V
3 relsnopg 5764 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Rel {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 691 1 Rel {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3448  {csn 4591  cop 4597  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5173  df-xp 5644  df-rel 5645
This theorem is referenced by:  fsn  7086  imasaddfnlem  17417  ex-res  29427
  Copyright terms: Public domain W3C validator