Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu0 | Structured version Visualization version GIF version |
Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
reu0 | ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4288 | . 2 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | |
2 | reurex 3352 | . 2 ⊢ (∃!𝑥 ∈ ∅ 𝜑 → ∃𝑥 ∈ ∅ 𝜑) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wrex 3064 ∃!wreu 3065 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-dif 3886 df-nul 4254 |
This theorem is referenced by: join0 18038 meet0 18039 |
Copyright terms: Public domain | W3C validator |