| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023.) |
| Ref | Expression |
|---|---|
| reu0 | ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4323 | . 2 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | |
| 2 | reurex 3358 | . 2 ⊢ (∃!𝑥 ∈ ∅ 𝜑 → ∃𝑥 ∈ ∅ 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wrex 3053 ∃!wreu 3352 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: join0 18364 meet0 18365 |
| Copyright terms: Public domain | W3C validator |