MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu0 Structured version   Visualization version   GIF version

Theorem reu0 4289
Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023.)
Assertion
Ref Expression
reu0 ¬ ∃!𝑥 ∈ ∅ 𝜑

Proof of Theorem reu0
StepHypRef Expression
1 rex0 4288 . 2 ¬ ∃𝑥 ∈ ∅ 𝜑
2 reurex 3352 . 2 (∃!𝑥 ∈ ∅ 𝜑 → ∃𝑥 ∈ ∅ 𝜑)
31, 2mto 196 1 ¬ ∃!𝑥 ∈ ∅ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wrex 3064  ∃!wreu 3065  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-dif 3886  df-nul 4254
This theorem is referenced by:  join0  18038  meet0  18039
  Copyright terms: Public domain W3C validator