Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu0 | Structured version Visualization version GIF version |
Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
reu0 | ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4291 | . 2 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | |
2 | reurex 3362 | . 2 ⊢ (∃!𝑥 ∈ ∅ 𝜑 → ∃𝑥 ∈ ∅ 𝜑) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wrex 3065 ∃!wreu 3066 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-dif 3890 df-nul 4257 |
This theorem is referenced by: join0 18123 meet0 18124 |
Copyright terms: Public domain | W3C validator |