MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu0 Structured version   Visualization version   GIF version

Theorem reu0 4367
Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023.)
Assertion
Ref Expression
reu0 ¬ ∃!𝑥 ∈ ∅ 𝜑

Proof of Theorem reu0
StepHypRef Expression
1 rex0 4366 . 2 ¬ ∃𝑥 ∈ ∅ 𝜑
2 reurex 3382 . 2 (∃!𝑥 ∈ ∅ 𝜑 → ∃𝑥 ∈ ∅ 𝜑)
31, 2mto 197 1 ¬ ∃!𝑥 ∈ ∅ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wrex 3068  ∃!wreu 3376  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-dif 3966  df-nul 4340
This theorem is referenced by:  join0  18463  meet0  18464
  Copyright terms: Public domain W3C validator