Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu0 | Structured version Visualization version GIF version |
Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
reu0 | ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4258 | . 2 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | |
2 | reurex 3341 | . 2 ⊢ (∃!𝑥 ∈ ∅ 𝜑 → ∃𝑥 ∈ ∅ 𝜑) | |
3 | 1, 2 | mto 200 | 1 ⊢ ¬ ∃!𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wrex 3071 ∃!wreu 3072 ∅c0 4227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-sb 2070 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-dif 3863 df-nul 4228 |
This theorem is referenced by: meet0 17826 join0 17827 |
Copyright terms: Public domain | W3C validator |