MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  join0 Structured version   Visualization version   GIF version

Theorem join0 18309
Description: Lemma for odumeet 18314. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Assertion
Ref Expression
join0 (join‘∅) = ∅

Proof of Theorem join0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5243 . . 3 ∅ ∈ V
2 eqid 2731 . . . 4 (lub‘∅) = (lub‘∅)
3 eqid 2731 . . . 4 (join‘∅) = (join‘∅)
42, 3joinfval 18277 . . 3 (∅ ∈ V → (join‘∅) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (lub‘∅)𝑧})
51, 4ax-mp 5 . 2 (join‘∅) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (lub‘∅)𝑧}
6 df-oprab 7350 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (lub‘∅)𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (lub‘∅)𝑧)}
7 br0 5138 . . . . . . . . 9 ¬ {𝑥, 𝑦}∅𝑧
8 base0 17125 . . . . . . . . . . . . 13 ∅ = (Base‘∅)
9 eqid 2731 . . . . . . . . . . . . 13 (le‘∅) = (le‘∅)
10 biid 261 . . . . . . . . . . . . 13 ((∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)) ↔ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)))
11 id 22 . . . . . . . . . . . . 13 (∅ ∈ V → ∅ ∈ V)
128, 9, 2, 10, 11lubfval 18254 . . . . . . . . . . . 12 (∅ ∈ V → (lub‘∅) = ((𝑤 ∈ 𝒫 ∅ ↦ (𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)))) ↾ {𝑤 ∣ ∃!𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦))}))
131, 12ax-mp 5 . . . . . . . . . . 11 (lub‘∅) = ((𝑤 ∈ 𝒫 ∅ ↦ (𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)))) ↾ {𝑤 ∣ ∃!𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦))})
14 reu0 4308 . . . . . . . . . . . . . 14 ¬ ∃!𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦))
1514abf 4353 . . . . . . . . . . . . 13 {𝑤 ∣ ∃!𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦))} = ∅
1615reseq2i 5924 . . . . . . . . . . . 12 ((𝑤 ∈ 𝒫 ∅ ↦ (𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)))) ↾ {𝑤 ∣ ∃!𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦))}) = ((𝑤 ∈ 𝒫 ∅ ↦ (𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)))) ↾ ∅)
17 res0 5931 . . . . . . . . . . . 12 ((𝑤 ∈ 𝒫 ∅ ↦ (𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)))) ↾ ∅) = ∅
1816, 17eqtri 2754 . . . . . . . . . . 11 ((𝑤 ∈ 𝒫 ∅ ↦ (𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦)))) ↾ {𝑤 ∣ ∃!𝑧 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑧 ∧ ∀𝑦 ∈ ∅ (∀𝑥𝑤 𝑥(le‘∅)𝑦𝑧(le‘∅)𝑦))}) = ∅
1913, 18eqtri 2754 . . . . . . . . . 10 (lub‘∅) = ∅
2019breqi 5095 . . . . . . . . 9 ({𝑥, 𝑦} (lub‘∅)𝑧 ↔ {𝑥, 𝑦}∅𝑧)
217, 20mtbir 323 . . . . . . . 8 ¬ {𝑥, 𝑦} (lub‘∅)𝑧
2221intnan 486 . . . . . . 7 ¬ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (lub‘∅)𝑧)
2322nex 1801 . . . . . 6 ¬ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (lub‘∅)𝑧)
2423nex 1801 . . . . 5 ¬ ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (lub‘∅)𝑧)
2524nex 1801 . . . 4 ¬ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (lub‘∅)𝑧)
2625abf 4353 . . 3 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (lub‘∅)𝑧)} = ∅
276, 26eqtri 2754 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (lub‘∅)𝑧} = ∅
285, 27eqtri 2754 1 (join‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  ∃!wreu 3344  Vcvv 3436  c0 4280  𝒫 cpw 4547  {cpr 4575  cop 4579   class class class wbr 5089  cmpt 5170  cres 5616  cfv 6481  crio 7302  {coprab 7347  lecple 17168  lubclub 18215  joincjn 18217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-slot 17093  df-ndx 17105  df-base 17121  df-lub 18250  df-join 18252
This theorem is referenced by:  odujoin  18312
  Copyright terms: Public domain W3C validator