MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meet0 Structured version   Visualization version   GIF version

Theorem meet0 18305
Description: Lemma for odujoin 18307. (Contributed by Stefan O'Rear, 29-Jan-2015.) TODO (df-riota 7298 update): This proof increased from 152 bytes to 547 bytes after the df-riota 7298 change. Any way to shorten it? join0 18304 also.
Assertion
Ref Expression
meet0 (meet‘∅) = ∅

Proof of Theorem meet0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5240 . . 3 ∅ ∈ V
2 eqid 2731 . . . 4 (glb‘∅) = (glb‘∅)
3 eqid 2731 . . . 4 (meet‘∅) = (meet‘∅)
42, 3meetfval 18286 . . 3 (∅ ∈ V → (meet‘∅) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧})
51, 4ax-mp 5 . 2 (meet‘∅) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧}
6 df-oprab 7345 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)}
7 br0 5135 . . . . . . . . 9 ¬ {𝑥, 𝑦}∅𝑧
8 base0 17120 . . . . . . . . . . . . 13 ∅ = (Base‘∅)
9 eqid 2731 . . . . . . . . . . . . 13 (le‘∅) = (le‘∅)
10 biid 261 . . . . . . . . . . . . 13 ((∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)) ↔ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))
11 id 22 . . . . . . . . . . . . 13 (∅ ∈ V → ∅ ∈ V)
128, 9, 2, 10, 11glbfval 18262 . . . . . . . . . . . 12 (∅ ∈ V → (glb‘∅) = ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))}))
131, 12ax-mp 5 . . . . . . . . . . 11 (glb‘∅) = ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))})
14 reu0 4306 . . . . . . . . . . . . . 14 ¬ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))
1514abf 4351 . . . . . . . . . . . . 13 {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))} = ∅
1615reseq2i 5920 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))}) = ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ ∅)
17 res0 5927 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ ∅) = ∅
1816, 17eqtri 2754 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))}) = ∅
1913, 18eqtri 2754 . . . . . . . . . 10 (glb‘∅) = ∅
2019breqi 5092 . . . . . . . . 9 ({𝑥, 𝑦} (glb‘∅)𝑧 ↔ {𝑥, 𝑦}∅𝑧)
217, 20mtbir 323 . . . . . . . 8 ¬ {𝑥, 𝑦} (glb‘∅)𝑧
2221intnan 486 . . . . . . 7 ¬ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2322nex 1801 . . . . . 6 ¬ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2423nex 1801 . . . . 5 ¬ ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2524nex 1801 . . . 4 ¬ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2625abf 4351 . . 3 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)} = ∅
276, 26eqtri 2754 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧} = ∅
285, 27eqtri 2754 1 (meet‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  ∃!wreu 3344  Vcvv 3436  c0 4278  𝒫 cpw 4545  {cpr 4573  cop 4577   class class class wbr 5086  cmpt 5167  cres 5613  cfv 6476  crio 7297  {coprab 7342  lecple 17163  glbcglb 18211  meetcmee 18213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-1cn 11059  ax-addcl 11061
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-nn 12121  df-slot 17088  df-ndx 17100  df-base 17116  df-glb 18246  df-meet 18248
This theorem is referenced by:  odumeet  18309
  Copyright terms: Public domain W3C validator