MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaxfrd Structured version   Visualization version   GIF version

Theorem riotaxfrd 7276
Description: Change the variable 𝑥 in the expression for "the unique 𝑥 such that 𝜓 " to another variable 𝑦 contained in expression 𝐵. Use reuhypd 5343 to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riotaxfrd.1 𝑦𝐶
riotaxfrd.2 ((𝜑𝑦𝐴) → 𝐵𝐴)
riotaxfrd.3 ((𝜑 ∧ (𝑦𝐴 𝜒) ∈ 𝐴) → 𝐶𝐴)
riotaxfrd.4 (𝑥 = 𝐵 → (𝜓𝜒))
riotaxfrd.5 (𝑦 = (𝑦𝐴 𝜒) → 𝐵 = 𝐶)
riotaxfrd.6 ((𝜑𝑥𝐴) → ∃!𝑦𝐴 𝑥 = 𝐵)
Assertion
Ref Expression
riotaxfrd ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝑥𝐴 𝜓) = 𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem riotaxfrd
StepHypRef Expression
1 rabid 3311 . . . 4 (𝑥 ∈ {𝑥𝐴𝜓} ↔ (𝑥𝐴𝜓))
21baib 536 . . 3 (𝑥𝐴 → (𝑥 ∈ {𝑥𝐴𝜓} ↔ 𝜓))
32riotabiia 7262 . 2 (𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓}) = (𝑥𝐴 𝜓)
4 riotaxfrd.2 . . . . . 6 ((𝜑𝑦𝐴) → 𝐵𝐴)
5 riotaxfrd.6 . . . . . 6 ((𝜑𝑥𝐴) → ∃!𝑦𝐴 𝑥 = 𝐵)
6 riotaxfrd.4 . . . . . 6 (𝑥 = 𝐵 → (𝜓𝜒))
74, 5, 6reuxfr1ds 3687 . . . . 5 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑦𝐴 𝜒))
8 riotacl2 7258 . . . . . . . 8 (∃!𝑦𝐴 𝜒 → (𝑦𝐴 𝜒) ∈ {𝑦𝐴𝜒})
98adantl 482 . . . . . . 7 ((𝜑 ∧ ∃!𝑦𝐴 𝜒) → (𝑦𝐴 𝜒) ∈ {𝑦𝐴𝜒})
10 riotacl 7259 . . . . . . . 8 (∃!𝑦𝐴 𝜒 → (𝑦𝐴 𝜒) ∈ 𝐴)
11 nfriota1 7248 . . . . . . . . 9 𝑦(𝑦𝐴 𝜒)
12 riotaxfrd.1 . . . . . . . . 9 𝑦𝐶
13 riotaxfrd.5 . . . . . . . . 9 (𝑦 = (𝑦𝐴 𝜒) → 𝐵 = 𝐶)
1411, 12, 4, 6, 13rabxfrd 5341 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 𝜒) ∈ 𝐴) → (𝐶 ∈ {𝑥𝐴𝜓} ↔ (𝑦𝐴 𝜒) ∈ {𝑦𝐴𝜒}))
1510, 14sylan2 593 . . . . . . 7 ((𝜑 ∧ ∃!𝑦𝐴 𝜒) → (𝐶 ∈ {𝑥𝐴𝜓} ↔ (𝑦𝐴 𝜒) ∈ {𝑦𝐴𝜒}))
169, 15mpbird 256 . . . . . 6 ((𝜑 ∧ ∃!𝑦𝐴 𝜒) → 𝐶 ∈ {𝑥𝐴𝜓})
1716ex 413 . . . . 5 (𝜑 → (∃!𝑦𝐴 𝜒𝐶 ∈ {𝑥𝐴𝜓}))
187, 17sylbid 239 . . . 4 (𝜑 → (∃!𝑥𝐴 𝜓𝐶 ∈ {𝑥𝐴𝜓}))
1918imp 407 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝐶 ∈ {𝑥𝐴𝜓})
20 riotaxfrd.3 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 𝜒) ∈ 𝐴) → 𝐶𝐴)
2120ex 413 . . . . . . 7 (𝜑 → ((𝑦𝐴 𝜒) ∈ 𝐴𝐶𝐴))
2210, 21syl5 34 . . . . . 6 (𝜑 → (∃!𝑦𝐴 𝜒𝐶𝐴))
237, 22sylbid 239 . . . . 5 (𝜑 → (∃!𝑥𝐴 𝜓𝐶𝐴))
2423imp 407 . . . 4 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝐶𝐴)
251baibr 537 . . . . . . 7 (𝑥𝐴 → (𝜓𝑥 ∈ {𝑥𝐴𝜓}))
2625reubiia 3325 . . . . . 6 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓})
2726biimpi 215 . . . . 5 (∃!𝑥𝐴 𝜓 → ∃!𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓})
2827adantl 482 . . . 4 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓})
29 nfcv 2908 . . . . 5 𝑥𝐶
30 nfrab1 3318 . . . . . 6 𝑥{𝑥𝐴𝜓}
3130nfel2 2926 . . . . 5 𝑥 𝐶 ∈ {𝑥𝐴𝜓}
32 eleq1 2827 . . . . 5 (𝑥 = 𝐶 → (𝑥 ∈ {𝑥𝐴𝜓} ↔ 𝐶 ∈ {𝑥𝐴𝜓}))
3329, 31, 32riota2f 7266 . . . 4 ((𝐶𝐴 ∧ ∃!𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓}) → (𝐶 ∈ {𝑥𝐴𝜓} ↔ (𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓}) = 𝐶))
3424, 28, 33syl2anc 584 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝐶 ∈ {𝑥𝐴𝜓} ↔ (𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓}) = 𝐶))
3519, 34mpbid 231 . 2 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝑥𝐴 𝑥 ∈ {𝑥𝐴𝜓}) = 𝐶)
363, 35eqtr3id 2793 1 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝑥𝐴 𝜓) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wnfc 2888  ∃!wreu 3067  {crab 3069  crio 7240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-un 3893  df-in 3895  df-ss 3905  df-sn 4563  df-pr 4565  df-uni 4841  df-iota 6395  df-riota 7241
This theorem is referenced by:  riotaneg  11963  zriotaneg  12444  riotaocN  37230
  Copyright terms: Public domain W3C validator