Proof of Theorem riotaxfrd
| Step | Hyp | Ref
| Expression |
| 1 | | rabid 3458 |
. . . 4
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 2 | 1 | baib 535 |
. . 3
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ 𝜓)) |
| 3 | 2 | riotabiia 7408 |
. 2
⊢
(℩𝑥
∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) = (℩𝑥 ∈ 𝐴 𝜓) |
| 4 | | riotaxfrd.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| 5 | | riotaxfrd.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 6 | | riotaxfrd.4 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 7 | 4, 5, 6 | reuxfr1ds 3757 |
. . . . 5
⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑦 ∈ 𝐴 𝜒)) |
| 8 | | riotacl2 7404 |
. . . . . . . 8
⊢
(∃!𝑦 ∈
𝐴 𝜒 → (℩𝑦 ∈ 𝐴 𝜒) ∈ {𝑦 ∈ 𝐴 ∣ 𝜒}) |
| 9 | 8 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃!𝑦 ∈ 𝐴 𝜒) → (℩𝑦 ∈ 𝐴 𝜒) ∈ {𝑦 ∈ 𝐴 ∣ 𝜒}) |
| 10 | | riotacl 7405 |
. . . . . . . 8
⊢
(∃!𝑦 ∈
𝐴 𝜒 → (℩𝑦 ∈ 𝐴 𝜒) ∈ 𝐴) |
| 11 | | nfriota1 7395 |
. . . . . . . . 9
⊢
Ⅎ𝑦(℩𝑦 ∈ 𝐴 𝜒) |
| 12 | | riotaxfrd.1 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐶 |
| 13 | | riotaxfrd.5 |
. . . . . . . . 9
⊢ (𝑦 = (℩𝑦 ∈ 𝐴 𝜒) → 𝐵 = 𝐶) |
| 14 | 11, 12, 4, 6, 13 | rabxfrd 5417 |
. . . . . . . 8
⊢ ((𝜑 ∧ (℩𝑦 ∈ 𝐴 𝜒) ∈ 𝐴) → (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (℩𝑦 ∈ 𝐴 𝜒) ∈ {𝑦 ∈ 𝐴 ∣ 𝜒})) |
| 15 | 10, 14 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃!𝑦 ∈ 𝐴 𝜒) → (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (℩𝑦 ∈ 𝐴 𝜒) ∈ {𝑦 ∈ 𝐴 ∣ 𝜒})) |
| 16 | 9, 15 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ ∃!𝑦 ∈ 𝐴 𝜒) → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 17 | 16 | ex 412 |
. . . . 5
⊢ (𝜑 → (∃!𝑦 ∈ 𝐴 𝜒 → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 18 | 7, 17 | sylbid 240 |
. . . 4
⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 19 | 18 | imp 406 |
. . 3
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 20 | | riotaxfrd.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ (℩𝑦 ∈ 𝐴 𝜒) ∈ 𝐴) → 𝐶 ∈ 𝐴) |
| 21 | 20 | ex 412 |
. . . . . . 7
⊢ (𝜑 → ((℩𝑦 ∈ 𝐴 𝜒) ∈ 𝐴 → 𝐶 ∈ 𝐴)) |
| 22 | 10, 21 | syl5 34 |
. . . . . 6
⊢ (𝜑 → (∃!𝑦 ∈ 𝐴 𝜒 → 𝐶 ∈ 𝐴)) |
| 23 | 7, 22 | sylbid 240 |
. . . . 5
⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 → 𝐶 ∈ 𝐴)) |
| 24 | 23 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → 𝐶 ∈ 𝐴) |
| 25 | 1 | baibr 536 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 26 | 25 | reubiia 3387 |
. . . . . 6
⊢
(∃!𝑥 ∈
𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 27 | 26 | biimpi 216 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐴 𝜓 → ∃!𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 28 | 27 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 29 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑥𝐶 |
| 30 | | nfrab1 3457 |
. . . . . 6
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} |
| 31 | 30 | nfel2 2924 |
. . . . 5
⊢
Ⅎ𝑥 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} |
| 32 | | eleq1 2829 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ 𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 33 | 29, 31, 32 | riota2f 7412 |
. . . 4
⊢ ((𝐶 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) → (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (℩𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) = 𝐶)) |
| 34 | 24, 28, 33 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝐶 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (℩𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) = 𝐶)) |
| 35 | 19, 34 | mpbid 232 |
. 2
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (℩𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓}) = 𝐶) |
| 36 | 3, 35 | eqtr3id 2791 |
1
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (℩𝑥 ∈ 𝐴 𝜓) = 𝐶) |