MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreuopreu Structured version   Visualization version   GIF version

Theorem opreuopreu 7876
Description: There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023.)
Hypothesis
Ref Expression
opreuopreu.a ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝜓𝜑))
Assertion
Ref Expression
opreuopreu (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑝)   𝜓(𝑝,𝑎,𝑏)

Proof of Theorem opreuopreu
StepHypRef Expression
1 elxpi 5611 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)))
2 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → 𝑝 = ⟨𝑎, 𝑏⟩)
3 vex 3436 . . . . . . . . . . . . . . 15 𝑎 ∈ V
4 vex 3436 . . . . . . . . . . . . . . 15 𝑏 ∈ V
53, 4op1st 7839 . . . . . . . . . . . . . 14 (1st ‘⟨𝑎, 𝑏⟩) = 𝑎
65eqcomi 2747 . . . . . . . . . . . . 13 𝑎 = (1st ‘⟨𝑎, 𝑏⟩)
73, 4op2nd 7840 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
87eqcomi 2747 . . . . . . . . . . . . 13 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩)
96, 8pm3.2i 471 . . . . . . . . . . . 12 (𝑎 = (1st ‘⟨𝑎, 𝑏⟩) ∧ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩))
10 fveq2 6774 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = (1st ‘⟨𝑎, 𝑏⟩))
1110eqeq2d 2749 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑎 = (1st𝑝) ↔ 𝑎 = (1st ‘⟨𝑎, 𝑏⟩)))
12 fveq2 6774 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = (2nd ‘⟨𝑎, 𝑏⟩))
1312eqeq2d 2749 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑏 = (2nd𝑝) ↔ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩)))
1411, 13anbi12d 631 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) ↔ (𝑎 = (1st ‘⟨𝑎, 𝑏⟩) ∧ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩))))
159, 14mpbiri 257 . . . . . . . . . . 11 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)))
16 opreuopreu.a . . . . . . . . . . 11 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝜓𝜑))
1715, 16syl 17 . . . . . . . . . 10 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜑))
1817biimprd 247 . . . . . . . . 9 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜓))
1918adantr 481 . . . . . . . 8 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → (𝜑𝜓))
2019impcom 408 . . . . . . 7 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → 𝜓)
212, 20jca 512 . . . . . 6 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
2221ex 413 . . . . 5 (𝜑 → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
23222eximdv 1922 . . . 4 (𝜑 → (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
241, 23syl5com 31 . . 3 (𝑝 ∈ (𝐴 × 𝐵) → (𝜑 → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
2517biimpa 477 . . . . 5 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑)
2625a1i 11 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑))
2726exlimdvv 1937 . . 3 (𝑝 ∈ (𝐴 × 𝐵) → (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑))
2824, 27impbid 211 . 2 (𝑝 ∈ (𝐴 × 𝐵) → (𝜑 ↔ ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
2928reubiia 3324 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃!wreu 3066  cop 4567   × cxp 5587  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  2sqreuopb  26616
  Copyright terms: Public domain W3C validator