MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreuopreu Structured version   Visualization version   GIF version

Theorem opreuopreu 8016
Description: There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023.)
Hypothesis
Ref Expression
opreuopreu.a ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝜓𝜑))
Assertion
Ref Expression
opreuopreu (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑝)   𝜓(𝑝,𝑎,𝑏)

Proof of Theorem opreuopreu
StepHypRef Expression
1 elxpi 5663 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)))
2 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → 𝑝 = ⟨𝑎, 𝑏⟩)
3 vex 3454 . . . . . . . . . . . . . . 15 𝑎 ∈ V
4 vex 3454 . . . . . . . . . . . . . . 15 𝑏 ∈ V
53, 4op1st 7979 . . . . . . . . . . . . . 14 (1st ‘⟨𝑎, 𝑏⟩) = 𝑎
65eqcomi 2739 . . . . . . . . . . . . 13 𝑎 = (1st ‘⟨𝑎, 𝑏⟩)
73, 4op2nd 7980 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
87eqcomi 2739 . . . . . . . . . . . . 13 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩)
96, 8pm3.2i 470 . . . . . . . . . . . 12 (𝑎 = (1st ‘⟨𝑎, 𝑏⟩) ∧ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩))
10 fveq2 6861 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = (1st ‘⟨𝑎, 𝑏⟩))
1110eqeq2d 2741 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑎 = (1st𝑝) ↔ 𝑎 = (1st ‘⟨𝑎, 𝑏⟩)))
12 fveq2 6861 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = (2nd ‘⟨𝑎, 𝑏⟩))
1312eqeq2d 2741 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑏 = (2nd𝑝) ↔ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩)))
1411, 13anbi12d 632 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) ↔ (𝑎 = (1st ‘⟨𝑎, 𝑏⟩) ∧ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩))))
159, 14mpbiri 258 . . . . . . . . . . 11 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)))
16 opreuopreu.a . . . . . . . . . . 11 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝜓𝜑))
1715, 16syl 17 . . . . . . . . . 10 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜑))
1817biimprd 248 . . . . . . . . 9 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜓))
1918adantr 480 . . . . . . . 8 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → (𝜑𝜓))
2019impcom 407 . . . . . . 7 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → 𝜓)
212, 20jca 511 . . . . . 6 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
2221ex 412 . . . . 5 (𝜑 → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
23222eximdv 1919 . . . 4 (𝜑 → (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
241, 23syl5com 31 . . 3 (𝑝 ∈ (𝐴 × 𝐵) → (𝜑 → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
2517biimpa 476 . . . . 5 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑)
2625a1i 11 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑))
2726exlimdvv 1934 . . 3 (𝑝 ∈ (𝐴 × 𝐵) → (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑))
2824, 27impbid 212 . 2 (𝑝 ∈ (𝐴 × 𝐵) → (𝜑 ↔ ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
2928reubiia 3363 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!wreu 3354  cop 4598   × cxp 5639  cfv 6514  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971  df-2nd 7972
This theorem is referenced by:  2sqreuopb  27386
  Copyright terms: Public domain W3C validator