MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreuopreu Structured version   Visualization version   GIF version

Theorem opreuopreu 7806
Description: There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023.)
Hypothesis
Ref Expression
opreuopreu.a ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝜓𝜑))
Assertion
Ref Expression
opreuopreu (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑝)   𝜓(𝑝,𝑎,𝑏)

Proof of Theorem opreuopreu
StepHypRef Expression
1 elxpi 5573 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)))
2 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → 𝑝 = ⟨𝑎, 𝑏⟩)
3 vex 3412 . . . . . . . . . . . . . . 15 𝑎 ∈ V
4 vex 3412 . . . . . . . . . . . . . . 15 𝑏 ∈ V
53, 4op1st 7769 . . . . . . . . . . . . . 14 (1st ‘⟨𝑎, 𝑏⟩) = 𝑎
65eqcomi 2746 . . . . . . . . . . . . 13 𝑎 = (1st ‘⟨𝑎, 𝑏⟩)
73, 4op2nd 7770 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
87eqcomi 2746 . . . . . . . . . . . . 13 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩)
96, 8pm3.2i 474 . . . . . . . . . . . 12 (𝑎 = (1st ‘⟨𝑎, 𝑏⟩) ∧ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩))
10 fveq2 6717 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑎, 𝑏⟩ → (1st𝑝) = (1st ‘⟨𝑎, 𝑏⟩))
1110eqeq2d 2748 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑎 = (1st𝑝) ↔ 𝑎 = (1st ‘⟨𝑎, 𝑏⟩)))
12 fveq2 6717 . . . . . . . . . . . . . 14 (𝑝 = ⟨𝑎, 𝑏⟩ → (2nd𝑝) = (2nd ‘⟨𝑎, 𝑏⟩))
1312eqeq2d 2748 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑏 = (2nd𝑝) ↔ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩)))
1411, 13anbi12d 634 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) ↔ (𝑎 = (1st ‘⟨𝑎, 𝑏⟩) ∧ 𝑏 = (2nd ‘⟨𝑎, 𝑏⟩))))
159, 14mpbiri 261 . . . . . . . . . . 11 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)))
16 opreuopreu.a . . . . . . . . . . 11 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝜓𝜑))
1715, 16syl 17 . . . . . . . . . 10 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜓𝜑))
1817biimprd 251 . . . . . . . . 9 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜓))
1918adantr 484 . . . . . . . 8 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → (𝜑𝜓))
2019impcom 411 . . . . . . 7 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → 𝜓)
212, 20jca 515 . . . . . 6 ((𝜑 ∧ (𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵))) → (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
2221ex 416 . . . . 5 (𝜑 → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
23222eximdv 1927 . . . 4 (𝜑 → (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐴𝑏𝐵)) → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
241, 23syl5com 31 . . 3 (𝑝 ∈ (𝐴 × 𝐵) → (𝜑 → ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
2517biimpa 480 . . . . 5 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑)
2625a1i 11 . . . 4 (𝑝 ∈ (𝐴 × 𝐵) → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑))
2726exlimdvv 1942 . . 3 (𝑝 ∈ (𝐴 × 𝐵) → (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓) → 𝜑))
2824, 27impbid 215 . 2 (𝑝 ∈ (𝐴 × 𝐵) → (𝜑 ↔ ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓)))
2928reubiia 3302 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  ∃!wreu 3063  cop 4547   × cxp 5549  cfv 6380  1st c1st 7759  2nd c2nd 7760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fv 6388  df-1st 7761  df-2nd 7762
This theorem is referenced by:  2sqreuopb  26349
  Copyright terms: Public domain W3C validator