Proof of Theorem reuxfr1dd
Step | Hyp | Ref
| Expression |
1 | | reuxfr1dd.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
2 | | reurex 3392 |
. . . . . 6
⊢
(∃!𝑦 ∈
𝐶 𝑥 = 𝐴 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
4 | 3 | biantrurd 532 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓))) |
5 | | r19.41v 3195 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓)) |
6 | | reuxfr1dd.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) → (𝜓 ↔ 𝜒)) |
7 | 6 | pm5.32da 578 |
. . . . . . . 8
⊢ (𝜑 → (((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ∧ 𝜓) ↔ ((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ∧ 𝜒))) |
8 | | anass 468 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ∧ 𝜓) ↔ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓))) |
9 | | anass 468 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ∧ 𝜒) ↔ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜒))) |
10 | 7, 8, 9 | 3bitr3g 313 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜓)) ↔ (𝑦 ∈ 𝐶 ∧ (𝑥 = 𝐴 ∧ 𝜒)))) |
11 | 10 | rexbidv2 3181 |
. . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
12 | 5, 11 | bitr3id 285 |
. . . . 5
⊢ (𝜑 → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
13 | 12 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
14 | 4, 13 | bitrd 279 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
15 | 14 | reubidva 3404 |
. 2
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
16 | | reuxfr1dd.1 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
17 | | reurmo 3391 |
. . . 4
⊢
(∃!𝑦 ∈
𝐶 𝑥 = 𝐴 → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) |
18 | 1, 17 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) |
19 | 16, 18 | reuxfrd 3771 |
. 2
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒) ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
20 | 15, 19 | bitrd 279 |
1
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |