Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuxfr1dd Structured version   Visualization version   GIF version

Theorem reuxfr1dd 48619
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Simplifies reuxfr1d 3773. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
reuxfr1dd.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
reuxfr1dd.2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
reuxfr1dd.3 ((𝜑 ∧ (𝑦𝐶𝑥 = 𝐴)) → (𝜓𝜒))
Assertion
Ref Expression
reuxfr1dd (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem reuxfr1dd
StepHypRef Expression
1 reuxfr1dd.2 . . . . . 6 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
2 reurex 3392 . . . . . 6 (∃!𝑦𝐶 𝑥 = 𝐴 → ∃𝑦𝐶 𝑥 = 𝐴)
31, 2syl 17 . . . . 5 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
43biantrurd 532 . . . 4 ((𝜑𝑥𝐵) → (𝜓 ↔ (∃𝑦𝐶 𝑥 = 𝐴𝜓)))
5 r19.41v 3195 . . . . . 6 (∃𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ (∃𝑦𝐶 𝑥 = 𝐴𝜓))
6 reuxfr1dd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐶𝑥 = 𝐴)) → (𝜓𝜒))
76pm5.32da 578 . . . . . . . 8 (𝜑 → (((𝑦𝐶𝑥 = 𝐴) ∧ 𝜓) ↔ ((𝑦𝐶𝑥 = 𝐴) ∧ 𝜒)))
8 anass 468 . . . . . . . 8 (((𝑦𝐶𝑥 = 𝐴) ∧ 𝜓) ↔ (𝑦𝐶 ∧ (𝑥 = 𝐴𝜓)))
9 anass 468 . . . . . . . 8 (((𝑦𝐶𝑥 = 𝐴) ∧ 𝜒) ↔ (𝑦𝐶 ∧ (𝑥 = 𝐴𝜒)))
107, 8, 93bitr3g 313 . . . . . . 7 (𝜑 → ((𝑦𝐶 ∧ (𝑥 = 𝐴𝜓)) ↔ (𝑦𝐶 ∧ (𝑥 = 𝐴𝜒))))
1110rexbidv2 3181 . . . . . 6 (𝜑 → (∃𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
125, 11bitr3id 285 . . . . 5 (𝜑 → ((∃𝑦𝐶 𝑥 = 𝐴𝜓) ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
1312adantr 480 . . . 4 ((𝜑𝑥𝐵) → ((∃𝑦𝐶 𝑥 = 𝐴𝜓) ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
144, 13bitrd 279 . . 3 ((𝜑𝑥𝐵) → (𝜓 ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
1514reubidva 3404 . 2 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜒)))
16 reuxfr1dd.1 . . 3 ((𝜑𝑦𝐶) → 𝐴𝐵)
17 reurmo 3391 . . . 4 (∃!𝑦𝐶 𝑥 = 𝐴 → ∃*𝑦𝐶 𝑥 = 𝐴)
181, 17syl 17 . . 3 ((𝜑𝑥𝐵) → ∃*𝑦𝐶 𝑥 = 𝐴)
1916, 18reuxfrd 3771 . 2 (𝜑 → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜒) ↔ ∃!𝑦𝐶 𝜒))
2015, 19bitrd 279 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389
This theorem is referenced by:  upeu2  48782
  Copyright terms: Public domain W3C validator