Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uppropd Structured version   Visualization version   GIF version

Theorem uppropd 49154
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
uppropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
uppropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
uppropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
uppropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
uppropd.a (𝜑𝐴𝑉)
uppropd.b (𝜑𝐵𝑉)
uppropd.c (𝜑𝐶𝑉)
uppropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
uppropd (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷))

Proof of Theorem uppropd
Dummy variables 𝑓 𝑔 𝑘 𝑚 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uppropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 uppropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 uppropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 uppropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 uppropd.a . . . 4 (𝜑𝐴𝑉)
6 uppropd.b . . . 4 (𝜑𝐵𝑉)
7 uppropd.c . . . 4 (𝜑𝐶𝑉)
8 uppropd.d . . . 4 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17870 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
103homfeqbas 17663 . . . 4 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
1110adantr 480 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (Base‘𝐶) = (Base‘𝐷))
121homfeqbas 17663 . . . . . . . . 9 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (Base‘𝐴) = (Base‘𝐵))
1413adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → (Base‘𝐴) = (Base‘𝐵))
15 eqid 2730 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
16 eqid 2730 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
17 eqid 2730 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
183ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
19 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → 𝑤 ∈ (Base‘𝐶))
2019ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑤 ∈ (Base‘𝐶))
21 eqid 2730 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
22 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐴 Func 𝐶))
2322func1st2nd 49053 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
2421, 15, 23funcf1 17834 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
2524adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
2625ffvelcdmda 7058 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑦) ∈ (Base‘𝐶))
2715, 16, 17, 18, 20, 26homfeqval 17664 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦)) = (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦)))
28 eqid 2730 . . . . . . . . . 10 (Hom ‘𝐴) = (Hom ‘𝐴)
29 eqid 2730 . . . . . . . . . 10 (Hom ‘𝐵) = (Hom ‘𝐵)
301ad4antr 732 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (Homf𝐴) = (Homf𝐵))
31 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → 𝑥 ∈ (Base‘𝐴))
3231ad2antrr 726 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → 𝑥 ∈ (Base‘𝐴))
33 simplr 768 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → 𝑦 ∈ (Base‘𝐴))
3421, 28, 29, 30, 32, 33homfeqval 17664 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
35 eqid 2730 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
36 eqid 2730 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
3718ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf𝐶) = (Homf𝐷))
384ad5antr 734 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (compf𝐶) = (compf𝐷))
3920ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑤 ∈ (Base‘𝐶))
4024ffvelcdmda 7058 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
4140adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
4241ad3antrrr 730 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
4326ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((1st𝑓)‘𝑦) ∈ (Base‘𝐶))
44 simprr 772 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))
4544ad3antrrr 730 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))
4623ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4721, 28, 16, 46, 32, 33funcf2 17836 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (𝑥(2nd𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶(((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑓)‘𝑦)))
4847ffvelcdmda 7058 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑓)𝑦)‘𝑘) ∈ (((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑓)‘𝑦)))
4915, 16, 35, 36, 37, 38, 39, 42, 43, 45, 48comfeqval 17675 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))
5049eqeq2d 2741 . . . . . . . . 9 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5134, 50reueqbidva 48784 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5227, 51raleqbidva 3307 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5314, 52raleqbidva 3307 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → (∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5453pm5.32da 579 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))))
553ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
56 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑤 ∈ (Base‘𝐶))
5715, 16, 17, 55, 56, 40homfeqval 17664 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)) = (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))
5857eleq2d 2815 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))))
5958pm5.32da 579 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))))
6013eleq2d 2815 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐴) ↔ 𝑥 ∈ (Base‘𝐵)))
6160anbi1d 631 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))))
6259, 61bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))))
6362anbi1d 631 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))))
6454, 63bitrd 279 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))))
6564opabbidv 5175 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))})
669, 11, 65mpoeq123dva 7465 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑤 ∈ (Base‘𝐶) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑤 ∈ (Base‘𝐷) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))}))
6721, 15, 28, 16, 35upfval 49149 . 2 (𝐴 UP 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑤 ∈ (Base‘𝐶) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚))})
68 eqid 2730 . . 3 (Base‘𝐵) = (Base‘𝐵)
69 eqid 2730 . . 3 (Base‘𝐷) = (Base‘𝐷)
7068, 69, 29, 17, 36upfval 49149 . 2 (𝐵 UP 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑤 ∈ (Base‘𝐷) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))})
7166, 67, 703eqtr4g 2790 1 (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  cop 4597   class class class wbr 5109  {copab 5171  wf 6509  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Hom chom 17237  compcco 17238  Homf chomf 17633  compfccomf 17634   Func cfunc 17822   UP cup 49146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-func 17826  df-up 49147
This theorem is referenced by:  lmdpropd  49625  cmdpropd  49626  cmddu  49636
  Copyright terms: Public domain W3C validator