Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uppropd Structured version   Visualization version   GIF version

Theorem uppropd 49143
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
uppropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
uppropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
uppropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
uppropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
uppropd.a (𝜑𝐴𝑉)
uppropd.b (𝜑𝐵𝑉)
uppropd.c (𝜑𝐶𝑉)
uppropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
uppropd (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷))

Proof of Theorem uppropd
Dummy variables 𝑓 𝑔 𝑘 𝑚 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uppropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 uppropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 uppropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 uppropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 uppropd.a . . . 4 (𝜑𝐴𝑉)
6 uppropd.b . . . 4 (𝜑𝐵𝑉)
7 uppropd.c . . . 4 (𝜑𝐶𝑉)
8 uppropd.d . . . 4 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17840 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
103homfeqbas 17633 . . . 4 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
1110adantr 480 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (Base‘𝐶) = (Base‘𝐷))
121homfeqbas 17633 . . . . . . . . 9 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (Base‘𝐴) = (Base‘𝐵))
1413adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → (Base‘𝐴) = (Base‘𝐵))
15 eqid 2729 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
16 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
17 eqid 2729 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
183ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
19 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → 𝑤 ∈ (Base‘𝐶))
2019ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑤 ∈ (Base‘𝐶))
21 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
22 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐴 Func 𝐶))
2322func1st2nd 49038 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
2421, 15, 23funcf1 17804 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
2524adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
2625ffvelcdmda 7038 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑦) ∈ (Base‘𝐶))
2715, 16, 17, 18, 20, 26homfeqval 17634 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦)) = (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦)))
28 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐴) = (Hom ‘𝐴)
29 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐵) = (Hom ‘𝐵)
301ad4antr 732 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (Homf𝐴) = (Homf𝐵))
31 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → 𝑥 ∈ (Base‘𝐴))
3231ad2antrr 726 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → 𝑥 ∈ (Base‘𝐴))
33 simplr 768 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → 𝑦 ∈ (Base‘𝐴))
3421, 28, 29, 30, 32, 33homfeqval 17634 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
35 eqid 2729 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
36 eqid 2729 . . . . . . . . . . 11 (comp‘𝐷) = (comp‘𝐷)
3718ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf𝐶) = (Homf𝐷))
384ad5antr 734 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (compf𝐶) = (compf𝐷))
3920ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑤 ∈ (Base‘𝐶))
4024ffvelcdmda 7038 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
4140adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
4241ad3antrrr 730 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
4326ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((1st𝑓)‘𝑦) ∈ (Base‘𝐶))
44 simprr 772 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))
4544ad3antrrr 730 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))
4623ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4721, 28, 16, 46, 32, 33funcf2 17806 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (𝑥(2nd𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶(((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑓)‘𝑦)))
4847ffvelcdmda 7038 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑓)𝑦)‘𝑘) ∈ (((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑓)‘𝑦)))
4915, 16, 35, 36, 37, 38, 39, 42, 43, 45, 48comfeqval 17645 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))
5049eqeq2d 2740 . . . . . . . . 9 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5134, 50reueqbidva 48767 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))) → (∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5227, 51raleqbidva 3302 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5314, 52raleqbidva 3302 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)))) → (∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)))
5453pm5.32da 579 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))))
553ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
56 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑤 ∈ (Base‘𝐶))
5715, 16, 17, 55, 56, 40homfeqval 17634 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)) = (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))
5857eleq2d 2814 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))))
5958pm5.32da 579 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))))
6013eleq2d 2814 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐴) ↔ 𝑥 ∈ (Base‘𝐵)))
6160anbi1d 631 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))))
6259, 61bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥)))))
6362anbi1d 631 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))))
6454, 63bitrd 279 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))))
6564opabbidv 5168 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))})
669, 11, 65mpoeq123dva 7443 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑤 ∈ (Base‘𝐶) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑤 ∈ (Base‘𝐷) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))}))
6721, 15, 28, 16, 35upfval 49138 . 2 (𝐴 UP 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑤 ∈ (Base‘𝐶) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐶)((1st𝑓)‘𝑦))𝑚))})
68 eqid 2729 . . 3 (Base‘𝐵) = (Base‘𝐵)
69 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
7068, 69, 29, 17, 36upfval 49138 . 2 (𝐵 UP 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑤 ∈ (Base‘𝐷) ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩(comp‘𝐷)((1st𝑓)‘𝑦))𝑚))})
7166, 67, 703eqtr4g 2789 1 (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3349  cop 4591   class class class wbr 5102  {copab 5164  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  compcco 17208  Homf chomf 17603  compfccomf 17604   Func cfunc 17792   UP cup 49135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17605  df-cid 17606  df-homf 17607  df-comf 17608  df-func 17796  df-up 49136
This theorem is referenced by:  lmdpropd  49619  cmdpropd  49620  cmddu  49630
  Copyright terms: Public domain W3C validator