| Step | Hyp | Ref
| Expression |
| 1 | | uppropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 2 | | uppropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
| 3 | | uppropd.3 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 4 | | uppropd.4 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 5 | | uppropd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 6 | | uppropd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 7 | | uppropd.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 8 | | uppropd.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 17870 |
. . 3
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 10 | 3 | homfeqbas 17663 |
. . . 4
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 11 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (Base‘𝐶) = (Base‘𝐷)) |
| 12 | 1 | homfeqbas 17663 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (Base‘𝐴) = (Base‘𝐵)) |
| 14 | 13 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) → (Base‘𝐴) = (Base‘𝐵)) |
| 15 | | eqid 2730 |
. . . . . . . . 9
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 16 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 17 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 18 | 3 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 19 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → 𝑤 ∈ (Base‘𝐶)) |
| 20 | 19 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑤 ∈ (Base‘𝐶)) |
| 21 | | eqid 2730 |
. . . . . . . . . . . 12
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 22 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐴 Func 𝐶)) |
| 23 | 22 | func1st2nd 49053 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 24 | 21, 15, 23 | funcf1 17834 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (1st ‘𝑓):(Base‘𝐴)⟶(Base‘𝐶)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) → (1st ‘𝑓):(Base‘𝐴)⟶(Base‘𝐶)) |
| 26 | 25 | ffvelcdmda 7058 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → ((1st ‘𝑓)‘𝑦) ∈ (Base‘𝐶)) |
| 27 | 15, 16, 17, 18, 20, 26 | homfeqval 17664 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦)) = (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))) |
| 28 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
| 29 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
| 30 | 1 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 31 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) → 𝑥 ∈ (Base‘𝐴)) |
| 32 | 31 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) → 𝑥 ∈ (Base‘𝐴)) |
| 33 | | simplr 768 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) → 𝑦 ∈ (Base‘𝐴)) |
| 34 | 21, 28, 29, 30, 32, 33 | homfeqval 17664 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
| 35 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 36 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 37 | 18 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 38 | 4 | ad5antr 734 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 39 | 20 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑤 ∈ (Base‘𝐶)) |
| 40 | 24 | ffvelcdmda 7058 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st ‘𝑓)‘𝑥) ∈ (Base‘𝐶)) |
| 41 | 40 | adantrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) → ((1st ‘𝑓)‘𝑥) ∈ (Base‘𝐶)) |
| 42 | 41 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((1st ‘𝑓)‘𝑥) ∈ (Base‘𝐶)) |
| 43 | 26 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((1st ‘𝑓)‘𝑦) ∈ (Base‘𝐶)) |
| 44 | | simprr 772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) → 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) |
| 45 | 44 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) |
| 46 | 23 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 47 | 21, 28, 16, 46, 32, 33 | funcf2 17836 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) → (𝑥(2nd ‘𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶(((1st ‘𝑓)‘𝑥)(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) |
| 48 | 47 | ffvelcdmda 7058 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑓)𝑦)‘𝑘) ∈ (((1st ‘𝑓)‘𝑥)(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) |
| 49 | 15, 16, 35, 36, 37, 38, 39, 42, 43, 45, 48 | comfeqval 17675 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚) = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚)) |
| 50 | 49 | eqeq2d 2741 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) ∧ 𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚))) |
| 51 | 34, 50 | reueqbidva 48784 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ 𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))) → (∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚))) |
| 52 | 27, 51 | raleqbidva 3307 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚))) |
| 53 | 14, 52 | raleqbidva 3307 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)))) → (∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚) ↔ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚))) |
| 54 | 53 | pm5.32da 579 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚)))) |
| 55 | 3 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 56 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑤 ∈ (Base‘𝐶)) |
| 57 | 15, 16, 17, 55, 56, 40 | homfeqval 17664 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)) = (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))) |
| 58 | 57 | eleq2d 2815 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥)))) |
| 59 | 58 | pm5.32da 579 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))))) |
| 60 | 13 | eleq2d 2815 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (𝑥 ∈ (Base‘𝐴) ↔ 𝑥 ∈ (Base‘𝐵))) |
| 61 | 60 | anbi1d 631 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))))) |
| 62 | 59, 61 | bitrd 279 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ↔ (𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))))) |
| 63 | 62 | anbi1d 631 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚)))) |
| 64 | 54, 63 | bitrd 279 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → (((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚)))) |
| 65 | 64 | opabbidv 5175 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑤 ∈ (Base‘𝐶))) → {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚))} = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚))}) |
| 66 | 9, 11, 65 | mpoeq123dva 7465 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑤 ∈ (Base‘𝐶) ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑤 ∈ (Base‘𝐷) ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚))})) |
| 67 | 21, 15, 28, 16, 35 | upfval 49149 |
. 2
⊢ (𝐴 UP 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑤 ∈ (Base‘𝐶) ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐴)∀𝑔 ∈ (𝑤(Hom ‘𝐶)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐴)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐶)((1st ‘𝑓)‘𝑦))𝑚))}) |
| 68 | | eqid 2730 |
. . 3
⊢
(Base‘𝐵) =
(Base‘𝐵) |
| 69 | | eqid 2730 |
. . 3
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 70 | 68, 69, 29, 17, 36 | upfval 49149 |
. 2
⊢ (𝐵 UP 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑤 ∈ (Base‘𝐷) ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐵) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐵)∀𝑔 ∈ (𝑤(Hom ‘𝐷)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐵)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐷)((1st ‘𝑓)‘𝑦))𝑚))}) |
| 71 | 66, 67, 70 | 3eqtr4g 2790 |
1
⊢ (𝜑 → (𝐴 UP 𝐶) = (𝐵 UP 𝐷)) |