| Metamath
Proof Explorer Theorem List (p. 490 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fvconst0ci 48901 | A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝑌 = ((𝐴 × {𝐵})‘𝑋) ⇒ ⊢ (𝑌 = ∅ ∨ 𝑌 = 𝐵) | ||
| Theorem | fvconstdomi 48902 | A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵 | ||
| Theorem | f1omo 48903* | There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48902 assuming ax-un 7663 (see f1omoALT 48905). (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
| Theorem | f1omoOLD 48904* | Obsolete version of f1omo 48903 as of 24-Nov-2025. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
| Theorem | f1omoALT 48905* | There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 48903 without assuming ax-un 7663. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
| Theorem | iccin 48906 | Intersection of two closed intervals of extended reals. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)[,]if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) | ||
| Theorem | iccdisj2 48907 | If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) | ||
| Theorem | iccdisj 48908 | If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) | ||
| Theorem | slotresfo 48909* | The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48877 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐸 Fn V & ⊢ (𝑘 ∈ 𝐴 → (𝐸‘𝑘) ∈ 𝑉) & ⊢ (𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴) & ⊢ (𝑏 ∈ 𝑉 → 𝑏 = (𝐸‘𝐾)) ⇒ ⊢ (𝐸 ↾ 𝐴):𝐴–onto→𝑉 | ||
| Theorem | mreuniss 48910 | The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → ∪ 𝑆 ⊆ 𝑋) | ||
Additional contents for topology. | ||
| Theorem | clduni 48911 | The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) | ||
| Theorem | opncldeqv 48912* | Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) | ||
| Theorem | opndisj 48913 | Two ways of saying that two open sets are disjoint, if 𝐽 is a topology and 𝑋 is an open set. (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅))) | ||
| Theorem | clddisj 48914 | Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 48913 with elssuni 4887 replaced by the combination of cldss 22937 and eqid 2730. (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) | ||
| Theorem | neircl 48915 | Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.) |
| ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) | ||
| Theorem | opnneilem 48916* | Lemma factoring out common proof steps of opnneil 48920 and opnneirv 48918. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
| Theorem | opnneir 48917* | If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) | ||
| Theorem | opnneirv 48918* | A variant of opnneir 48917 with different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝜒)) | ||
| Theorem | opnneilv 48919* | The converse of opnneir 48917 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 48915), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
| Theorem | opnneil 48920* | A variant of opnneilv 48919. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓))) | ||
| Theorem | opnneieqv 48921* | The equivalence between neighborhood and open neighborhood. See opnneieqvv 48922 for different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓))) | ||
| Theorem | opnneieqvv 48922* | The equivalence between neighborhood and open neighborhood. A variant of opnneieqv 48921 with two dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
| Theorem | restcls2lem 48923 | A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑌) | ||
| Theorem | restcls2 48924 | A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
| Theorem | restclsseplem 48925 | Lemma for restclssep 48926. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ⊆ 𝑌) ⇒ ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) | ||
| Theorem | restclssep 48926 | Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) | ||
| Theorem | cnneiima 48927 | Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑁 ∈ ((nei‘𝐾)‘𝑇)) & ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝑇)) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝑁) ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | iooii 48928 | Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) | ||
| Theorem | icccldii 48929 | Closed intervals are closed sets of II. Note that iccss 13306, iccordt 23122, and ordtresticc 23131 are proved from ixxss12 13257, ordtcld3 23107, and ordtrest2 23112, respectively. An alternate proof uses restcldi 23081, dfii2 24795, and icccld 24674. (Contributed by Zhi Wang, 8-Sep-2024.) |
| ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘II)) | ||
| Theorem | i0oii 48930 | (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝐴 ≤ 1 → (0[,)𝐴) ∈ II) | ||
| Theorem | io1ii 48931 | (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (0 ≤ 𝐴 → (𝐴(,]1) ∈ II) | ||
| Theorem | sepnsepolem1 48932* | Lemma for sepnsepo 48934. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐽 (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) | ||
| Theorem | sepnsepolem2 48933* | Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 48934. Proof could be shortened by 1 step using ssdisjdr 48819. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | sepnsepo 48934* | Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | sepdisj 48935 | Separated sets are disjoint. Note that in general separatedness also requires 𝑇 ⊆ ∪ 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) ⇒ ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | ||
| Theorem | seposep 48936* | If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 48934. The relationship between separatedness and closure is also seen in isnrm 23243, isnrm2 23266, isnrm3 23267. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))) | ||
| Theorem | sepcsepo 48937* | If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 48934 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 48915, adantr 480, and rexlimiva 3123. (Contributed by Zhi Wang, 8-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| Theorem | sepfsepc 48938* | If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| Theorem | seppsepf 48939 | If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) | ||
| Theorem | seppcld 48940* | If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) | ||
| Theorem | isnrm4 48941* | A topological space is normal iff any two disjoint closed sets are separated by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝐽)‘𝑐)∃𝑦 ∈ ((nei‘𝐽)‘𝑑)(𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | dfnrm2 48942* | A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 23225. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} | ||
| Theorem | dfnrm3 48943* | A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm 23225. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝑗)‘𝑐)∃𝑦 ∈ ((nei‘𝑗)‘𝑑)(𝑥 ∩ 𝑦) = ∅)} | ||
| Theorem | iscnrm3lem1 48944* | Lemma for iscnrm3 48962. Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ((𝐽 ↾t 𝑥) ∈ Top ∧ 𝜑))) | ||
| Theorem | iscnrm3lem2 48945* | Lemma for iscnrm3 48962 proving a biconditional on restricted universal quantifications. (Contributed by Zhi Wang, 3-Sep-2024.) |
| ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓 → ((𝑤 ∈ 𝐷 ∧ 𝑣 ∈ 𝐸) → 𝜒))) & ⊢ (𝜑 → (∀𝑤 ∈ 𝐷 ∀𝑣 ∈ 𝐸 𝜒 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜓))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓 ↔ ∀𝑤 ∈ 𝐷 ∀𝑣 ∈ 𝐸 𝜒)) | ||
| Theorem | iscnrm3lem4 48946 | Lemma for iscnrm3lem5 48947 and iscnrm3r 48958. (Contributed by Zhi Wang, 4-Sep-2024.) |
| ⊢ (𝜂 → (𝜓 → 𝜁)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜁 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
| Theorem | iscnrm3lem5 48947* | Lemma for iscnrm3l 48961. (Contributed by Zhi Wang, 3-Sep-2024.) |
| ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜒 ↔ 𝜃)) & ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → (𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊)) & ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝜓 → 𝜃) → 𝜎)) ⇒ ⊢ (𝜏 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 (𝜑 → 𝜒) → (𝜂 → (𝜁 → 𝜎)))) | ||
| Theorem | iscnrm3lem6 48948* | Lemma for iscnrm3lem7 48949. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑊 𝜓 → 𝜒)) | ||
| Theorem | iscnrm3lem7 48949* | Lemma for iscnrm3rlem8 48957 and iscnrm3llem2 48960 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝑧 = 𝑍 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝑊 → (𝜃 ↔ 𝜏)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → (𝑍 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝜏)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜒)) | ||
| Theorem | iscnrm3rlem1 48950 | Lemma for iscnrm3rlem2 48951. The hypothesis could be generalized to (𝜑 → (𝑆 ∖ 𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∖ 𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇)))) | ||
| Theorem | iscnrm3rlem2 48951 | Lemma for iscnrm3rlem3 48952. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) | ||
| Theorem | iscnrm3rlem3 48952 | Lemma for iscnrm3r 48958. The designed subspace is a subset of the original set; the two sets are closed sets in the subspace. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽)) → ((∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))) | ||
| Theorem | iscnrm3rlem4 48953 | Lemma for iscnrm3rlem8 48957. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑁) | ||
| Theorem | iscnrm3rlem5 48954 | Lemma for iscnrm3rlem6 48955. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) | ||
| Theorem | iscnrm3rlem6 48955 | Lemma for iscnrm3rlem7 48956. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ⇒ ⊢ (𝜑 → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂 ∈ 𝐽)) | ||
| Theorem | iscnrm3rlem7 48956 | Lemma for iscnrm3rlem8 48957. Open neighborhoods in the subspace topology are open neighborhoods in the original topology given that the subspace is an open set in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ⇒ ⊢ (𝜑 → 𝑂 ∈ 𝐽) | ||
| Theorem | iscnrm3rlem8 48957* | Lemma for iscnrm3r 48958. Disjoint open neighborhoods in the subspace topology are disjoint open neighborhoods in the original topology given that the subspace is an open set in the original topology. Therefore, given any two sets separated in the original topology and separated by open neighborhoods in the subspace topology, they must be separated by open neighborhoods in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | ||
| Theorem | iscnrm3r 48958* | Lemma for iscnrm3 48962. If all subspaces of a topology are normal, i.e., two disjoint closed sets can be separated by open neighborhoods, then in the original topology two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 ∪ 𝐽∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → ((𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))))) | ||
| Theorem | iscnrm3llem1 48959 | Lemma for iscnrm3l 48961. Closed sets in the subspace are subsets of the underlying set of the original topology. (Contributed by Zhi Wang, 4-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (𝐶 ∈ 𝒫 ∪ 𝐽 ∧ 𝐷 ∈ 𝒫 ∪ 𝐽)) | ||
| Theorem | iscnrm3llem2 48960* | Lemma for iscnrm3l 48961. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 45071.) (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) | ||
| Theorem | iscnrm3l 48961* | Lemma for iscnrm3 48962. Given a topology 𝐽, if two separated sets can be separated by open neighborhoods, then all subspaces of the topology 𝐽 are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) → ((𝐶 ∩ 𝐷) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))))) | ||
| Theorem | iscnrm3 48962* | A completely normal topology is a topology in which two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | iscnrm3v 48963* | A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | iscnrm4 48964* | A completely normal topology is a topology in which two separated sets can be separated by neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅))) | ||
| Theorem | isprsd 48965* | Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐾 ∈ Proset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | lubeldm2 48966* | Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | glbeldm2 48967* | Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | lubeldm2d 48968* | Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | glbeldm2d 48969* | Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | lubsscl 48970 | If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈‘𝑇) = (𝑈‘𝑆))) | ||
| Theorem | glbsscl 48971 | If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) & ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) | ||
| Theorem | lubprlem 48972 | Lemma for lubprdm 48973 and lubpr 48974. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) | ||
| Theorem | lubprdm 48973 | The set of two comparable elements in a poset has LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | ||
| Theorem | lubpr 48974 | The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) | ||
| Theorem | glbprlem 48975 | Lemma for glbprdm 48976 and glbpr 48977. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) | ||
| Theorem | glbprdm 48976 | The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | ||
| Theorem | glbpr 48977 | The GLB of the set of two comparable elements in a poset is the less one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑋) | ||
| Theorem | joindm2 48978* | The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) | ||
| Theorem | joindm3 48979* | The join of any two elements always exists iff all unordered pairs have LUB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) | ||
| Theorem | meetdm2 48980* | The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) | ||
| Theorem | meetdm3 48981* | The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) | ||
| Theorem | posjidm 48982 | Poset join is idempotent. latjidm 18360 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) | ||
| Theorem | posmidm 48983 | Poset meet is idempotent. latmidm 18372 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) | ||
| Theorem | resiposbas 48984 | Construct a poset (resipos 48985) for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
| Theorem | resipos 48985 | A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) | ||
| Theorem | exbaspos 48986* | There exists a poset for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → ∃𝑘 ∈ Poset 𝐵 = (Base‘𝑘)) | ||
| Theorem | exbasprs 48987* | There exists a preordered set for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → ∃𝑘 ∈ Proset 𝐵 = (Base‘𝑘)) | ||
| Theorem | basresposfo 48988 | The base function restricted to the class of posets maps the class of posets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (Base ↾ Poset):Poset–onto→V | ||
| Theorem | basresprsfo 48989 | The base function restricted to the class of preordered sets maps the class of preordered sets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (Base ↾ Proset ): Proset –onto→V | ||
| Theorem | posnex 48990 | The class of posets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ Poset ∉ V | ||
| Theorem | prsnex 48991 | The class of preordered sets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ Proset ∉ V | ||
| Theorem | toslat 48992 | A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Lat) | ||
| Theorem | isclatd 48993* | The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → 𝑠 ∈ dom 𝑈) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → 𝑠 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 𝐾 ∈ CLat) | ||
| Theorem | intubeu 48994* | Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ (𝐶 ∈ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ ∀𝑦 ∈ 𝐵 (𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦)) ↔ 𝐶 = ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥})) | ||
| Theorem | unilbeu 48995* | Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ (𝐶 ∈ 𝐵 → ((𝐶 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶)) ↔ 𝐶 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴})) | ||
| Theorem | ipolublem 48996* | Lemma for ipolubdm 48997 and ipolub 48998. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑋 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑋 ≤ 𝑧)))) | ||
| Theorem | ipolubdm 48997* | The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) | ||
| Theorem | ipolub 48998* | The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18310 is in quantified form. mrelatlub 18460 could potentially be shortened using this. See mrelatlubALT 49005. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) & ⊢ (𝜑 → 𝑇 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
| Theorem | ipoglblem 48999* | Lemma for ipoglbdm 49000 and ipoglb 49001. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) | ||
| Theorem | ipoglbdm 49000* | The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |