HomeHome Metamath Proof Explorer
Theorem List (p. 490 of 494)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30864)
  Hilbert Space Explorer  Hilbert Space Explorer
(30865-32387)
  Users' Mathboxes  Users' Mathboxes
(32388-49308)
 

Theorem List for Metamath Proof Explorer - 48901-49000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelxpcbasex1 48901 A non-empty base set of the product category indicates the existence of the first factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof shortened by SN, 15-Oct-2025.)
𝑇 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑇)    &   (𝜑𝑋𝐵)       (𝜑𝐶 ∈ V)
 
Theoremelxpcbasex1ALT 48902 Alternate proof of elxpcbasex1 48901. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑇 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑇)    &   (𝜑𝑋𝐵)       (𝜑𝐶 ∈ V)
 
Theoremelxpcbasex2 48903 A non-empty base set of the product category indicates the existence of the second factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof shortened by SN, 15-Oct-2025.)
𝑇 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑇)    &   (𝜑𝑋𝐵)       (𝜑𝐷 ∈ V)
 
Theoremelxpcbasex2ALT 48904 Alternate proof of elxpcbasex2 48903. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑇 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑇)    &   (𝜑𝑋𝐵)       (𝜑𝐷 ∈ V)
 
Theoremxpcfucbas 48905 The base set of the product of two categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.)
𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))       ((𝐵 Func 𝐶) × (𝐷 Func 𝐸)) = (Base‘𝑇)
 
Theoremxpcfuchomfval 48906* Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.)
𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))    &   𝐴 = (Base‘𝑇)    &   𝐾 = (Hom ‘𝑇)       𝐾 = (𝑢𝐴, 𝑣𝐴 ↦ (((1st𝑢)(𝐵 Nat 𝐶)(1st𝑣)) × ((2nd𝑢)(𝐷 Nat 𝐸)(2nd𝑣))))
 
Theoremxpcfuchom 48907 Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.)
𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))    &   𝐴 = (Base‘𝑇)    &   𝐾 = (Hom ‘𝑇)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)       (𝜑 → (𝑋𝐾𝑌) = (((1st𝑋)(𝐵 Nat 𝐶)(1st𝑌)) × ((2nd𝑋)(𝐷 Nat 𝐸)(2nd𝑌))))
 
Theoremxpcfuchom2 48908 Value of the set of morphisms in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.)
𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))    &   (𝜑𝑀 ∈ (𝐵 Func 𝐶))    &   (𝜑𝑁 ∈ (𝐷 Func 𝐸))    &   (𝜑𝑃 ∈ (𝐵 Func 𝐶))    &   (𝜑𝑄 ∈ (𝐷 Func 𝐸))    &   𝐾 = (Hom ‘𝑇)       (𝜑 → (⟨𝑀, 𝑁𝐾𝑃, 𝑄⟩) = ((𝑀(𝐵 Nat 𝐶)𝑃) × (𝑁(𝐷 Nat 𝐸)𝑄)))
 
Theoremxpcfucco2 48909 Value of composition in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025.)
𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))    &   𝑂 = (comp‘𝑇)    &   (𝜑𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃))    &   (𝜑𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄))    &   (𝜑𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅))    &   (𝜑𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆))       (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝐾(⟨𝑀, 𝑃⟩(comp‘(𝐵 FuncCat 𝐶))𝑅)𝐹), (𝐿(⟨𝑁, 𝑄⟩(comp‘(𝐷 FuncCat 𝐸))𝑆)𝐺)⟩)
 
Theoremxpcfuccocl 48910 The composition of two natural transformations is a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025.)
𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))    &   𝑂 = (comp‘𝑇)    &   (𝜑𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃))    &   (𝜑𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄))    &   (𝜑𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅))    &   (𝜑𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆))       (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) ∈ ((𝑀(𝐵 Nat 𝐶)𝑅) × (𝑁(𝐷 Nat 𝐸)𝑆)))
 
Theoremxpcfucco3 48911* Value of composition in the binary product of categories of functors; expressed explicitly. (Contributed by Zhi Wang, 1-Oct-2025.)
𝑇 = ((𝐵 FuncCat 𝐶) ×c (𝐷 FuncCat 𝐸))    &   𝑂 = (comp‘𝑇)    &   (𝜑𝐹 ∈ (𝑀(𝐵 Nat 𝐶)𝑃))    &   (𝜑𝐺 ∈ (𝑁(𝐷 Nat 𝐸)𝑄))    &   (𝜑𝐾 ∈ (𝑃(𝐵 Nat 𝐶)𝑅))    &   (𝜑𝐿 ∈ (𝑄(𝐷 Nat 𝐸)𝑆))    &   𝑋 = (Base‘𝐵)    &   𝑌 = (Base‘𝐷)    &    · = (comp‘𝐶)    &    = (comp‘𝐸)       (𝜑 → (⟨𝐾, 𝐿⟩(⟨⟨𝑀, 𝑁⟩, ⟨𝑃, 𝑄⟩⟩𝑂𝑅, 𝑆⟩)⟨𝐹, 𝐺⟩) = ⟨(𝑥𝑋 ↦ ((𝐾𝑥)(⟨((1st𝑀)‘𝑥), ((1st𝑃)‘𝑥)⟩ · ((1st𝑅)‘𝑥))(𝐹𝑥))), (𝑦𝑌 ↦ ((𝐿𝑦)(⟨((1st𝑁)‘𝑦), ((1st𝑄)‘𝑦)⟩ ((1st𝑆)‘𝑦))(𝐺𝑦)))⟩)
 
21.49.15.9  Swap functors
 
Syntaxcswapf 48912 Extend class notation with the class of swap functors.
class swapF
 
Definitiondf-swapf 48913* Define the swap functor from (𝐶 ×c 𝐷) to (𝐷 ×c 𝐶) by swapping all objects (swapf1 48925) and morphisms (swapf2 48927) .

Such functor is called a "swap functor" in https://arxiv.org/pdf/2302.07810 48927 or a "twist functor" in https://arxiv.org/pdf/2508.01886 48927, the latter of which finds its counterpart as "twisting map" in https://arxiv.org/pdf/2411.04102 48927 for tensor product of algebras. The "swap functor" or "twisting map" is often denoted as a small tau 𝜏 in literature. However, the term "twist functor" is defined differently in https://arxiv.org/pdf/1208.4046 48927 and thus not adopted here.

tpos I depends on more mathbox theorems, and thus are not adopted here. See dfswapf2 48914 for an alternate definition.

(Contributed by Zhi Wang, 7-Oct-2025.)

swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
 
Theoremdfswapf2 48914* Alternate definition of swapF (df-swapf 48913). (Contributed by Zhi Wang, 9-Oct-2025.)
swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
 
Theoremswapfval 48915* Value of the swap functor. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐻 = (Hom ‘𝑆))       (𝜑 → (𝐶swapF𝐷) = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
 
Theoremswapfelvv 48916 A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)       (𝜑 → (𝐶swapF𝐷) ∈ (V × V))
 
Theoremswapf2fvala 48917* The morphism part of the swap functor. See also swapf2fval 48918. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐻 = (Hom ‘𝑆))       (𝜑 → (2nd ‘(𝐶swapF𝐷)) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
 
Theoremswapf2fval 48918* The morphism part of the swap functor. See also swapf2fvala 48917. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐻 = (Hom ‘𝑆))    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)       (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
 
Theoremswapf1vala 48919* The object part of the swap functor. See also swapf1val 48920. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)       (𝜑 → (1st ‘(𝐶swapF𝐷)) = (𝑥𝐵 {𝑥}))
 
Theoremswapf1val 48920* The object part of the swap functor. See also swapf1vala 48919. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)       (𝜑𝑂 = (𝑥𝐵 {𝑥}))
 
Theoremswapf2fn 48921 The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)       (𝜑𝑃 Fn (𝐵 × 𝐵))
 
Theoremswapf1a 48922 The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
 
Theoremswapf2vala 48923* The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐻 = (Hom ‘𝑆))       (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
 
Theoremswapf2a 48924 The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐻 = (Hom ‘𝑆))    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → ((𝑋𝑃𝑌)‘𝐹) = ⟨(2nd𝐹), (1st𝐹)⟩)
 
Theoremswapf1 48925 The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐷))       (𝜑 → (𝑋𝑂𝑌) = ⟨𝑌, 𝑋⟩)
 
Theoremswapf2val 48926* The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐷))    &   (𝜑𝑍 ∈ (Base‘𝐶))    &   (𝜑𝑊 ∈ (Base‘𝐷))    &   𝑆 = (𝐶 ×c 𝐷)    &   (𝜑𝐻 = (Hom ‘𝑆))       (𝜑 → (⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩) = (𝑓 ∈ (⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩) ↦ {𝑓}))
 
Theoremswapf2 48927 The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐷))    &   (𝜑𝑍 ∈ (Base‘𝐶))    &   (𝜑𝑊 ∈ (Base‘𝐷))    &   (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍))    &   (𝜑𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊))       (𝜑 → (𝐹(⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩)𝐺) = ⟨𝐺, 𝐹⟩)
 
Theoremswapf1f1o 48928 The object part of the swap functor is a bijection between base sets. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   (𝜑𝐶𝑈)    &   (𝜑𝐷𝑉)    &   𝐵 = (Base‘𝑆)    &   𝐴 = (Base‘𝑇)       (𝜑𝑂:𝐵1-1-onto𝐴)
 
Theoremswapf2f1o 48929 The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   𝐻 = (Hom ‘𝑆)    &   𝐽 = (Hom ‘𝑇)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐷))    &   (𝜑𝑍 ∈ (Base‘𝐶))    &   (𝜑𝑊 ∈ (Base‘𝐷))       (𝜑 → (⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩):(⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩)–1-1-onto→(⟨𝑌, 𝑋𝐽𝑊, 𝑍⟩))
 
Theoremswapf2f1oa 48930 The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   𝐻 = (Hom ‘𝑆)    &   𝐽 = (Hom ‘𝑇)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
 
Theoremswapf2f1oaALT 48931 Alternate proof of swapf2f1oa 48930. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   𝐻 = (Hom ‘𝑆)    &   𝐽 = (Hom ‘𝑇)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
 
Theoremswapfid 48932 Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfida 48933. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐷))    &    1 = (Id‘𝑆)    &   𝐼 = (Id‘𝑇)       (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = (𝐼‘(𝑂‘⟨𝑋, 𝑌⟩)))
 
Theoremswapfida 48933 Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfid 48932. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &    1 = (Id‘𝑆)    &   𝐼 = (Id‘𝑇)       (𝜑 → ((𝑋𝑃𝑋)‘( 1𝑋)) = (𝐼‘(𝑂𝑋)))
 
Theoremswapfcoa 48934 Composition in the source category is mapped to composition in the target. (𝜑𝐶 ∈ Cat) and (𝜑𝐷 ∈ Cat) can be replaced by a weaker hypothesis (𝜑𝑆 ∈ Cat). (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   𝐻 = (Hom ‘𝑆)    &   (𝜑𝑀 ∈ (𝑋𝐻𝑌))    &   (𝜑𝑁 ∈ (𝑌𝐻𝑍))    &    · = (comp‘𝑆)    &    = (comp‘𝑇)       (𝜑 → ((𝑋𝑃𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝑃𝑍)‘𝑁)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝑀)))
 
Theoremswapffunc 48935 The swap functor is a functor. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)       (𝜑𝑂(𝑆 Func 𝑇)𝑃)
 
Theoremswapfffth 48936 The swap functor is a fully faithful functor. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)       (𝜑𝑂((𝑆 Full 𝑇) ∩ (𝑆 Faith 𝑇))𝑃)
 
Theoremswapffunca 48937 The swap functor is a functor. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)       (𝜑 → (𝐶swapF𝐷) ∈ (𝑆 Func 𝑇))
 
Theoremswapfiso 48938 The swap functor is an isomorphism between product categories. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   𝐸 = (CatCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝑆𝑈)    &   (𝜑𝑇𝑈)    &   𝐼 = (Iso‘𝐸)       (𝜑 → (𝐶swapF𝐷) ∈ (𝑆𝐼𝑇))
 
Theoremswapciso 48939 The product category is categorically isomorphic to the swapped product category. (Contributed by Zhi Wang, 8-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝑆 = (𝐶 ×c 𝐷)    &   𝑇 = (𝐷 ×c 𝐶)    &   𝐸 = (CatCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝑆𝑈)    &   (𝜑𝑇𝑈)       (𝜑𝑆( ≃𝑐𝐸)𝑇)
 
21.49.15.10  Transposed curry functors
 
Theoremcofuswapfcl 48940 The bifunctor pre-composed with a swap functor is a bifunctor. (Contributed by Zhi Wang, 10-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   (𝜑𝐺 = (𝐹func (𝐶swapF𝐷)))       (𝜑𝐺 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
 
Theoremcofuswapf1 48941 The object part of a bifunctor pre-composed with a swap functor. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   (𝜑𝐺 = (𝐹func (𝐶swapF𝐷)))    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋(1st𝐺)𝑌) = (𝑌(1st𝐹)𝑋))
 
Theoremcofuswapf2 48942 The morphism part of a bifunctor pre-composed with a swap functor. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   (𝜑𝐺 = (𝐹func (𝐶swapF𝐷)))    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐴)    &   (𝜑𝑊𝐵)    &   𝐻 = (Hom ‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   (𝜑𝑀 ∈ (𝑋𝐻𝑍))    &   (𝜑𝑁 ∈ (𝑌𝐽𝑊))       (𝜑 → (𝑀(⟨𝑋, 𝑌⟩(2nd𝐺)⟨𝑍, 𝑊⟩)𝑁) = (𝑁(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑊, 𝑍⟩)𝑀))
 
Theoremtposcurf1cl 48943 The partially evaluated transposed curry functor is a functor. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   (𝜑𝑋𝐴)    &   (𝜑𝐾 = ((1st𝐺)‘𝑋))       (𝜑𝐾 ∈ (𝐷 Func 𝐸))
 
Theoremtposcurf11 48944 Value of the double evaluated transposed curry functor. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   (𝜑𝑋𝐴)    &   (𝜑𝐾 = ((1st𝐺)‘𝑋))    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑌𝐵)       (𝜑 → ((1st𝐾)‘𝑌) = (𝑌(1st𝐹)𝑋))
 
Theoremtposcurf12 48945 The partially evaluated transposed curry functor at a morphism. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   (𝜑𝑋𝐴)    &   (𝜑𝐾 = ((1st𝐺)‘𝑋))    &   𝐵 = (Base‘𝐷)    &   (𝜑𝑌𝐵)    &   𝐽 = (Hom ‘𝐷)    &    1 = (Id‘𝐶)    &   (𝜑𝑍𝐵)    &   (𝜑𝐻 ∈ (𝑌𝐽𝑍))       (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (𝐻(⟨𝑌, 𝑋⟩(2nd𝐹)⟨𝑍, 𝑋⟩)( 1𝑋)))
 
Theoremtposcurf1 48946* Value of the object part of the transposed curry functor. (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   (𝜑𝑋𝐴)    &   (𝜑𝐾 = ((1st𝐺)‘𝑋))    &   𝐵 = (Base‘𝐷)    &   𝐽 = (Hom ‘𝐷)    &    1 = (Id‘𝐶)       (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))⟩)
 
Theoremtposcurf2 48947* Value of the transposed curry functor at a morphism. (Contributed by Zhi Wang, 10-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Id‘𝐷)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝐾 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾))       (𝜑𝐿 = (𝑧𝐵 ↦ ((𝐼𝑧)(⟨𝑧, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑌⟩)𝐾)))
 
Theoremtposcurf2val 48948 Value of a component of the transposed curry functor natural transformation. (Contributed by Zhi Wang, 10-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Id‘𝐷)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝐾 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾))    &   (𝜑𝑍𝐵)       (𝜑 → (𝐿𝑍) = ((𝐼𝑍)(⟨𝑍, 𝑋⟩(2nd𝐹)⟨𝑍, 𝑌⟩)𝐾))
 
Theoremtposcurf2cl 48949 The transposed curry functor at a morphism is a natural transformation. (Contributed by Zhi Wang, 10-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))    &   𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Id‘𝐷)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝐾 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾))    &   𝑁 = (𝐷 Nat 𝐸)       (𝜑𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)))
 
Theoremtposcurfcl 48950 The transposed curry functor of a functor 𝐹:𝐷 × 𝐶𝐸 is a functor tposcurry (𝐹):𝐶⟶(𝐷𝐸). (Contributed by Zhi Wang, 9-Oct-2025.)
(𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))    &   𝑄 = (𝐷 FuncCat 𝐸)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))       (𝜑𝐺 ∈ (𝐶 Func 𝑄))
 
21.49.15.11  Constant functors
 
Theoremdiag1 48951* The constant functor of 𝑋. (Contributed by Zhi Wang, 17-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝐴 = (Base‘𝐶)    &   (𝜑𝑋𝐴)    &   𝐾 = ((1st𝐿)‘𝑋)    &   𝐵 = (Base‘𝐷)    &   𝐽 = (Hom ‘𝐷)    &    1 = (Id‘𝐶)       (𝜑𝐾 = ⟨(𝑦𝐵𝑋), (𝑦𝐵, 𝑧𝐵 ↦ (𝑓 ∈ (𝑦𝐽𝑧) ↦ ( 1𝑋)))⟩)
 
Theoremdiag1a 48952* The constant functor of 𝑋. (Contributed by Zhi Wang, 19-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝐴 = (Base‘𝐶)    &   (𝜑𝑋𝐴)    &   𝐾 = ((1st𝐿)‘𝑋)    &   𝐵 = (Base‘𝐷)    &   𝐽 = (Hom ‘𝐷)    &    1 = (Id‘𝐶)       (𝜑𝐾 = ⟨(𝐵 × {𝑋}), (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦𝐽𝑧) × {( 1𝑋)}))⟩)
 
Theoremdiag1f1lem 48953 The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. Note that (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌)) also holds because of diag1f1 48954 and f1fveq 7263. (Contributed by Zhi Wang, 19-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝐵 ≠ ∅)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   𝑀 = ((1st𝐿)‘𝑋)    &   𝑁 = ((1st𝐿)‘𝑌)       (𝜑 → (𝑀 = 𝑁𝑋 = 𝑌))
 
Theoremdiag1f1 48954 The object part of the diagonal functor is 1-1 if 𝐵 is non-empty. (Contributed by Zhi Wang, 19-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   (𝜑𝐵 ≠ ∅)       (𝜑 → (1st𝐿):𝐴1-1→(𝐷 Func 𝐶))
 
Theoremdiag2f1lem 48955 Lemma for diag2f1 48956. The converse is trivial (fveq2 6885). (Contributed by Zhi Wang, 21-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝐵 ≠ ∅)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))       (𝜑 → (((𝑋(2nd𝐿)𝑌)‘𝐹) = ((𝑋(2nd𝐿)𝑌)‘𝐺) → 𝐹 = 𝐺))
 
Theoremdiag2f1 48956 If 𝐵 is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025.)
𝐿 = (𝐶Δfunc𝐷)    &   𝐴 = (Base‘𝐶)    &   𝐵 = (Base‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝐵 ≠ ∅)    &   𝑁 = (𝐷 Nat 𝐶)       (𝜑 → (𝑋(2nd𝐿)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
 
21.49.15.12  Functor composition bifunctors
 
Theoremfucofulem1 48957 Lemma for proving functor theorems. (Contributed by Zhi Wang, 25-Sep-2025.)
(𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))    &   ((𝜑 ∧ (𝜃𝜏)) → 𝜂)    &   𝜒    &   ((𝜑𝜂) → 𝜃)    &   ((𝜑𝜂) → 𝜏)       (𝜑 → (𝜓𝜂))
 
Theoremfucofulem2 48958* Lemma for proving functor theorems. Maybe consider eufnfv 7230 to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025.)
𝐵 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))    &   𝐻 = (Hom ‘((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)))       (𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(𝐶 Nat 𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑢𝐺𝑣)) ∧ ∀𝑚𝐵𝑛𝐵 ((𝑚𝐺𝑛) = (𝑏 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛)), 𝑎 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛)) ↦ (𝑏(𝑚𝐺𝑛)𝑎)) ∧ ∀𝑝 ∈ ((1st𝑚)(𝐷 Nat 𝐸)(1st𝑛))∀𝑞 ∈ ((2nd𝑚)(𝐶 Nat 𝐷)(2nd𝑛))(𝑝(𝑚𝐺𝑛)𝑞) ∈ ((𝐹𝑚)(𝐶 Nat 𝐸)(𝐹𝑛)))))
 
Theoremfuco2el 48959 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩ ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿𝐹𝑅𝐺))
 
Theoremfuco2eld 48960 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝑊 = (𝑆 × 𝑅))    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝐾𝑆𝐿)    &   (𝜑𝐹𝑅𝐺)       (𝜑𝑈𝑊)
 
Theoremfuco2eld2 48961 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝑊 = (𝑆 × 𝑅))    &   (𝜑𝑈𝑊)    &   Rel 𝑆    &   Rel 𝑅       (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
 
Theoremfuco2eld3 48962 Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝑊 = (𝑆 × 𝑅))    &   (𝜑𝑈𝑊)    &   Rel 𝑆    &   Rel 𝑅       (𝜑 → ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))
 
Syntaxcfuco 48963 Extend class notation with functor composition bifunctors.
class F
 
Definitiondf-fuco 48964* Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (⟨𝐶, 𝐷⟩ ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 49006). The object part maps two functors to their composition (fuco11 48973 and fuco11b 48984). The morphism part defines the "composition" of two natural transformations (fuco22 48986) into another natural transformation (fuco22nat 48993) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 48999). Note that such "composition" is different from fucco 17980 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.)
F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfucofvalg 48965* Value of the function giving the functor composition bifunctor. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑𝑃𝑈)    &   (𝜑 → (1st𝑃) = 𝐶)    &   (𝜑 → (2nd𝑃) = 𝐷)    &   (𝜑𝐸𝑉)    &   (𝜑 → (𝑃F 𝐸) = )    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfucofval 48966* Value of the function giving the functor composition bifunctor. Hypotheses fucofval.c and fucofval.d are not redundant (fucofvalne 48972). (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑 = ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfucoelvv 48967 A functor composition bifunctor is an ordered pair. Enables 1st2ndb 8035. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )       (𝜑 ∈ (V × V))
 
Theoremfuco1 48968 The object part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑂 = ( ∘func𝑊))
 
Theoremfucof1 48969 The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑂:𝑊⟶(𝐶 Func 𝐸))
 
Theoremfuco2 48970* The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑃 = (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))))
 
Theoremfucofn2 48971 The morphism part of the functor composition bifunctor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑𝐶𝑇)    &   (𝜑𝐷𝑈)    &   (𝜑𝐸𝑉)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑𝑃 Fn (𝑊 × 𝑊))
 
Theoremfucofvalne 48972* Value of the function giving the functor composition bifunctor, if 𝐶 or 𝐷 are not sets. (Contributed by Zhi Wang, 7-Oct-2025.)
(𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V))    &   (𝜑𝐸 ∈ Cat)    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))       (𝜑 ≠ ⟨( ∘func𝑊), (𝑢𝑊, 𝑣𝑊(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
 
Theoremfuco11 48973 The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
 
Theoremfuco11cl 48974 The object part of the functor composition bifunctor maps into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → (𝑂𝑈) ∈ (𝐶 Func 𝐸))
 
Theoremfuco11a 48975* The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝐵 = (Base‘𝐶)       (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
 
Theoremfuco112 48976* The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝐵 = (Base‘𝐶)       (𝜑 → (2nd ‘(𝑂𝑈)) = (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
 
Theoremfuco111 48977 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → (1st ‘(𝑂𝑈)) = (𝐾𝐹))
 
Theoremfuco111x 48978 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. An object is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))       (𝜑 → ((1st ‘(𝑂𝑈))‘𝑋) = (𝐾‘(𝐹𝑋)))
 
Theoremfuco112x 48979 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))       (𝜑 → (𝑋(2nd ‘(𝑂𝑈))𝑌) = (((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌)))
 
Theoremfuco112xa 48980 The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌))       (𝜑 → ((𝑋(2nd ‘(𝑂𝑈))𝑌)‘𝐴) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐴)))
 
Theoremfuco11id 48981 The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &    1 = (Id‘𝐸)       (𝜑 → (𝐼‘(𝑂𝑈)) = ( 1 ∘ (𝐾𝐹)))
 
Theoremfuco11idx 48982 The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &    1 = (Id‘𝐸)    &   (𝜑𝑋 ∈ (Base‘𝐶))       (𝜑 → ((𝐼‘(𝑂𝑈))‘𝑋) = ( 1 ‘(𝐾‘(𝐹𝑋))))
 
Theoremfuco21 48983* The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑀(𝐶 Func 𝐷)𝑁)    &   (𝜑𝑅(𝐷 Func 𝐸)𝑆)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)       (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
 
Theoremfuco11b 48984 The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 11-Oct-2025.)
(𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
 
Theoremfuco11bALT 48985 Alternate proof of fuco11b 48984. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)) = 𝑂)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐷 Func 𝐸))       (𝜑 → (𝐺𝑂𝐹) = (𝐺func 𝐹))
 
Theoremfuco22 48986* The morphism part of the functor composition bifunctor. See also fuco22a 48997. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)))))
 
Theoremfucofn22 48987 The morphism part of the functor composition bifunctor maps two natural transformations to a function on a base set. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶))
 
Theoremfuco23 48988 The morphism part of the functor composition bifunctor. See also fuco23a 48999. (Contributed by Zhi Wang, 29-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))       (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀𝑋)) (((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
 
Theoremfuco22natlem1 48989 Lemma for fuco22nat 48993. The commutative square of natural transformation 𝐴 in category 𝐷, mapped to category 𝐸 by the morphism part 𝐿 of the functor. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)       (𝜑 → ((((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝐿(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝐾‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))))
 
Theoremfuco22natlem2 48990 Lemma for fuco22nat 48993. The commutative square of natural transformation 𝐵 in category 𝐸, combined with the commutative square of fuco22natlem1 48989. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))       (𝜑 → (((𝐵‘(𝑀𝑌))(⟨(𝐾‘(𝐹𝑌)), (𝐾‘(𝑀𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑌)𝐿(𝑀𝑌))‘(𝐴𝑌)))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝐹𝑌))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))(((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀𝑋)𝑆(𝑀𝑌))‘((𝑋𝑁𝑌)‘𝐻))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑌)))((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋)))))
 
Theoremfuco22natlem3 48991 Combine fuco22natlem2 48990 with fuco23 48988. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)       (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(⟨((𝐾𝐹)‘𝑋), ((𝐾𝐹)‘𝑌)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((((𝐹𝑋)𝐿(𝐹𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀𝑋)𝑆(𝑀𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(⟨((𝐾𝐹)‘𝑋), ((𝑅𝑀)‘𝑋)⟩(comp‘𝐸)((𝑅𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋)))
 
Theoremfuco22natlem 48992 The composed natural transformation is a natural transformation. Use fuco22nat 48993 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
 
Theoremfuco22nat 48993 The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))    &   (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))    &   (𝜑𝑈 = ⟨𝐾, 𝐹⟩)    &   (𝜑𝑉 = ⟨𝑅, 𝑀⟩)       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
 
Theoremfucof21 48994 The morphism part of the functor composition bifunctor maps a hom-set of the product category into a set of natural transformations. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &   𝐽 = (Hom ‘𝑇)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))    &   (𝜑𝑈𝑊)    &   (𝜑𝑉𝑊)       (𝜑 → (𝑈𝑃𝑉):(𝑈𝐽𝑉)⟶((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
 
Theoremfucoid 48995 Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 48996. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &    1 = (Id‘𝑇)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)    &   (𝜑𝐾(𝐷 Func 𝐸)𝐿)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)       (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
 
Theoremfucoid2 48996 Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 48995. (Contributed by Zhi Wang, 30-Sep-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))    &    1 = (Id‘𝑇)    &   𝑄 = (𝐶 FuncCat 𝐸)    &   𝐼 = (Id‘𝑄)    &   (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))    &   (𝜑𝑈𝑊)       (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
 
Theoremfuco22a 48997* The morphism part of the functor composition bifunctor. See also fuco22 48986. (Contributed by Zhi Wang, 1-Oct-2025.)
(𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨𝐾, 𝐹⟩)    &   (𝜑𝑉 = ⟨𝑅, 𝑀⟩)    &   (𝜑𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀))    &   (𝜑𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅))       (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st𝑀)‘𝑥))(⟨((1st𝐾)‘((1st𝐹)‘𝑥)), ((1st𝐾)‘((1st𝑀)‘𝑥))⟩(comp‘𝐸)((1st𝑅)‘((1st𝑀)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝐾)((1st𝑀)‘𝑥))‘(𝐴𝑥)))))
 
Theoremfuco23alem 48998 The naturality property (nati 17973) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &    · = (comp‘𝐸)       (𝜑 → ((𝐵‘(𝑀𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝐾‘(𝑀𝑋))⟩ · (𝑅‘(𝑀𝑋)))(((𝐹𝑋)𝐿(𝑀𝑋))‘(𝐴𝑋))) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋))(⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩ · (𝑅‘(𝑀𝑋)))(𝐵‘(𝐹𝑋))))
 
Theoremfuco23a 48999 The morphism part of the functor composition bifunctor. An alternate definition of F. See also fuco23 48988. (Contributed by Zhi Wang, 3-Oct-2025.)
(𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))    &   (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)    &   (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)    &   (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)    &   (𝜑 = (⟨(𝐾‘(𝐹𝑋)), (𝑅‘(𝐹𝑋))⟩(comp‘𝐸)(𝑅‘(𝑀𝑋))))       (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹𝑋)𝑆(𝑀𝑋))‘(𝐴𝑋)) (𝐵‘(𝐹𝑋))))
 
Theoremfucocolem1 49000 Lemma for fucoco 49004. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.)
(𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))    &   (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))    &   (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))    &   (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑃 ∈ (𝐷 Func 𝐸))    &   (𝜑𝑄 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐴 ∈ (((1st𝑃)‘((1st𝑄)‘𝑋))(Hom ‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋))))    &   (𝜑𝐵 ∈ (((1st𝐹)‘((1st𝐿)‘𝑋))(Hom ‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋))))       (𝜑 → (((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝑃)‘((1st𝑄)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))𝐴)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))(𝐵(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝑃)‘((1st𝑄)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))) = ((𝑈‘((1st𝑁)‘𝑋))(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐾)‘((1st𝑁)‘𝑋))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑋)))((𝐴(⟨((1st𝐹)‘((1st𝐿)‘𝑋)), ((1st𝑃)‘((1st𝑄)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))𝐵)(⟨((1st𝐹)‘((1st𝐺)‘𝑋)), ((1st𝐹)‘((1st𝐿)‘𝑋))⟩(comp‘𝐸)((1st𝐾)‘((1st𝑁)‘𝑋)))((((1st𝐺)‘𝑋)(2nd𝐹)((1st𝐿)‘𝑋))‘(𝑆𝑋)))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49308
  Copyright terms: Public domain < Previous  Next >