![]() |
Metamath
Proof Explorer Theorem List (p. 490 of 490) | < Previous Wrap > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30952) |
![]() (30953-32475) |
![]() (32476-48905) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aacllem 48901* | Lemma for other theorems about 𝔸. (Contributed by Brendan Leahy, 3-Jan-2020.) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴↑𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
Theorem | amgmwlem 48902 | Weighted version of amgmlem 27053. (Contributed by Kunhao Zheng, 19-Jun-2021.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) & ⊢ (𝜑 → 𝑊:𝐴⟶ℝ+) & ⊢ (𝜑 → (ℂfld Σg 𝑊) = 1) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f ↑𝑐𝑊)) ≤ (ℂfld Σg (𝐹 ∘f · 𝑊))) | ||
Theorem | amgmlemALT 48903 | Alternate proof of amgmlem 27053 using amgmwlem 48902. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
Theorem | amgmw2d 48904 | Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 44162). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → (𝑃 + 𝑄) = 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) | ||
Theorem | young2d 48905 | Young's inequality for 𝑛 = 2, a direct application of amgmw2d 48904. (Contributed by Kunhao Zheng, 6-Jul-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄))) |
< Previous Wrap > |
Copyright terms: Public domain | < Previous Wrap > |