![]() |
Metamath
Proof Explorer Theorem List (p. 490 of 492) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30963) |
![]() (30964-32486) |
![]() (32487-49161) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fuco2eld3 48901 | Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → 𝑊 = (𝑆 × 𝑅)) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ Rel 𝑆 & ⊢ Rel 𝑅 ⇒ ⊢ (𝜑 → ((1st ‘(1st ‘𝑈))𝑆(2nd ‘(1st ‘𝑈)) ∧ (1st ‘(2nd ‘𝑈))𝑅(2nd ‘(2nd ‘𝑈)))) | ||
Syntax | cfuco 48902 | Extend class notation with functor composition bifunctors. |
class ∘F | ||
Definition | df-fuco 48903* | Definition of functor composition bifunctors. Given three categories 𝐶, 𝐷, and 𝐸, (〈𝐶, 𝐷〉 ∘F 𝐸) is a functor from the product category of two categories of functors to a category of functors (fucofunc 48943). The object part maps two functors to their composition (fuco11 48912). The morphism part defines the "composition" of two natural transformations (fuco22 48923) into another natural transformation (fuco22nat 48930) such that a "cube-like" diagram commutes. The naturality property also gives an alternate definition (fuco23a 48936). Note that such "composition" is different from fucco 18028 because they "compose" along different "axes". (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ ∘F = (𝑝 ∈ V, 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈( ∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | ||
Theorem | fucofvalg 48904* | Value of the function giving the functor composition bifunctor. (Contributed by Zhi Wang, 7-Oct-2025.) |
⊢ (𝜑 → 𝑃 ∈ 𝑈) & ⊢ (𝜑 → (1st ‘𝑃) = 𝐶) & ⊢ (𝜑 → (2nd ‘𝑃) = 𝐷) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (𝑃 ∘F 𝐸) = ⚬ ) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | ||
Theorem | fucofval 48905* | Value of the function giving the functor composition bifunctor. Hypotheses fucofval.c and fucofval.d are not redundant (fucofvalne 48911). (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | ||
Theorem | fucoelvv 48906 | A functor composition bifunctor is an ordered pair. Enables 1st2ndb 8062. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) ⇒ ⊢ (𝜑 → ⚬ ∈ (V × V)) | ||
Theorem | fuco1 48907 | The object part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) | ||
Theorem | fucof1 48908 | The object part of the functor composition bifunctor maps ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑂:𝑊⟶(𝐶 Func 𝐸)) | ||
Theorem | fuco2 48909* | The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))) | ||
Theorem | fucofn2 48910 | The morphism part of the functor composition bifunctor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → 𝑃 Fn (𝑊 × 𝑊)) | ||
Theorem | fucofvalne 48911* | Value of the function giving the functor composition bifunctor, if 𝐶 or 𝐷 are not sets. (Contributed by Zhi Wang, 7-Oct-2025.) |
⊢ (𝜑 → ¬ (𝐶 ∈ V ∧ 𝐷 ∈ V)) & ⊢ (𝜑 → 𝐸 ∈ Cat) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ⇒ ⊢ (𝜑 → ⚬ ≠ 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | ||
Theorem | fuco11 48912 | The object part of the functor composition bifunctor maps two functors to their composition. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → (𝑂‘𝑈) = (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) | ||
Theorem | fuco11cl 48913 | The object part of the functor composition bifunctor maps into (𝐶 Func 𝐸). (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → (𝑂‘𝑈) ∈ (𝐶 Func 𝐸)) | ||
Theorem | fuco11a 48914* | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝑂‘𝑈) = 〈(𝐾 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) | ||
Theorem | fuco112 48915* | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (2nd ‘(𝑂‘𝑈)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) | ||
Theorem | fuco111 48916 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) | ||
Theorem | fuco111x 48917 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. An object is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((1st ‘(𝑂‘𝑈))‘𝑋) = (𝐾‘(𝐹‘𝑋))) | ||
Theorem | fuco112x 48918 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘(𝑂‘𝑈))𝑌) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))) | ||
Theorem | fuco112xa 48919 | The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝐶)𝑌)) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘(𝑂‘𝑈))𝑌)‘𝐴) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐴))) | ||
Theorem | fuco11id 48920 | The identity morphism of the mapped object. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 1 = (Id‘𝐸) ⇒ ⊢ (𝜑 → (𝐼‘(𝑂‘𝑈)) = ( 1 ∘ (𝐾 ∘ 𝐹))) | ||
Theorem | fuco11idx 48921 | The identity morphism of the mapped object. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ 1 = (Id‘𝐸) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((𝐼‘(𝑂‘𝑈))‘𝑋) = ( 1 ‘(𝐾‘(𝐹‘𝑋)))) | ||
Theorem | fuco21 48922* | The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) & ⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) | ||
Theorem | fuco22 48923* | The morphism part of the functor composition bifunctor. See also fuco22a 48934. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))))) | ||
Theorem | fucofn22 48924 | The morphism part of the functor composition bifunctor maps two natural transformations to a function on a base set. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶)) | ||
Theorem | fuco23 48925 | The morphism part of the functor composition bifunctor. See also fuco23a 48936. (Contributed by Zhi Wang, 29-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) ⇒ ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((𝐵‘(𝑀‘𝑋)) ∗ (((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | ||
Theorem | fuco22natlem1 48926 | Lemma for fuco22nat 48930. The commutative square of natural transformation 𝐴 in category 𝐷, mapped to category 𝐸 by the morphism part 𝐿 of the functor. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) ⇒ ⊢ (𝜑 → ((((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝐿(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝐾‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋)))) | ||
Theorem | fuco22natlem2 48927 | Lemma for fuco22nat 48930. The commutative square of natural transformation 𝐵 in category 𝐸, combined with the commutative square of fuco22natlem1 48926. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (((𝐵‘(𝑀‘𝑌))(〈(𝐾‘(𝐹‘𝑌)), (𝐾‘(𝑀‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑌)𝐿(𝑀‘𝑌))‘(𝐴‘𝑌)))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝐹‘𝑌))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))(((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝐻))) = ((((𝑀‘𝑋)𝑆(𝑀‘𝑌))‘((𝑋𝑁𝑌)‘𝐻))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑌)))((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))))) | ||
Theorem | fuco22natlem3 48928 | Combine fuco22natlem2 48927 with fuco23 48925. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑌)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝐾 ∘ 𝐹)‘𝑌)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((((𝐹‘𝑋)𝐿(𝐹‘𝑌)) ∘ (𝑋𝐺𝑌))‘𝐻)) = (((((𝑀‘𝑋)𝑆(𝑀‘𝑌)) ∘ (𝑋𝑁𝑌))‘𝐻)(〈((𝐾 ∘ 𝐹)‘𝑋), ((𝑅 ∘ 𝑀)‘𝑋)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑌))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋))) | ||
Theorem | fuco22natlem 48929 | The composed natural transformation is a natural transformation. Use fuco22nat 48930 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
Theorem | fuco22nat 48930 | The composed natural transformation is a natural transformation. (Contributed by Zhi Wang, 2-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) & ⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) & ⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) & ⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
Theorem | fucof21 48931 | The morphism part of the functor composition bifunctor maps a hom-set of the product category into a set of natural transformations. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑈𝑃𝑉):(𝑈𝐽𝑉)⟶((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) | ||
Theorem | fucoid 48932 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 48933. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 1 = (Id‘𝑇) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) & ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) ⇒ ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) | ||
Theorem | fucoid2 48933 | Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 48932. (Contributed by Zhi Wang, 30-Sep-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 1 = (Id‘𝑇) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ 𝐼 = (Id‘𝑄) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) | ||
Theorem | fuco22a 48934* | The morphism part of the functor composition bifunctor. See also fuco22 48923. (Contributed by Zhi Wang, 1-Oct-2025.) |
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈𝐾, 𝐹〉) & ⊢ (𝜑 → 𝑉 = 〈𝑅, 𝑀〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝐶 Nat 𝐷)𝑀)) & ⊢ (𝜑 → 𝐵 ∈ (𝐾(𝐷 Nat 𝐸)𝑅)) ⇒ ⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝐵‘((1st ‘𝑀)‘𝑥))(〈((1st ‘𝐾)‘((1st ‘𝐹)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑀)‘𝑥))〉(comp‘𝐸)((1st ‘𝑅)‘((1st ‘𝑀)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝐾)((1st ‘𝑀)‘𝑥))‘(𝐴‘𝑥))))) | ||
Theorem | fuco23alem 48935 | The naturality property (nati 18019) in category 𝐸. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ · = (comp‘𝐸) ⇒ ⊢ (𝜑 → ((𝐵‘(𝑀‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝐾‘(𝑀‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(((𝐹‘𝑋)𝐿(𝑀‘𝑋))‘(𝐴‘𝑋))) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋))(〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉 · (𝑅‘(𝑀‘𝑋)))(𝐵‘(𝐹‘𝑋)))) | ||
Theorem | fuco23a 48936 | The morphism part of the functor composition bifunctor. An alternate definition of ∘F. See also fuco23 48925. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) & ⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) & ⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) & ⊢ (𝜑 → ∗ = (〈(𝐾‘(𝐹‘𝑋)), (𝑅‘(𝐹‘𝑋))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑋)))) ⇒ ⊢ (𝜑 → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) = ((((𝐹‘𝑋)𝑆(𝑀‘𝑋))‘(𝐴‘𝑋)) ∗ (𝐵‘(𝐹‘𝑋)))) | ||
Theorem | fucocolem1 48937 | Lemma for fucoco 48941. Associativity for morphisms in category 𝐸. To simply put, ((𝑎 · 𝑏) · (𝑐 · 𝑑)) = (𝑎 · ((𝑏 · 𝑐) · 𝑑)) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025.) |
⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑃 ∈ (𝐷 Func 𝐸)) & ⊢ (𝜑 → 𝑄 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐴 ∈ (((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))(Hom ‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))) & ⊢ (𝜑 → 𝐵 ∈ (((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))(Hom ‘𝐸)((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)))) ⇒ ⊢ (𝜑 → (((𝑈‘((1st ‘𝑁)‘𝑋))(〈((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))𝐴)(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))(𝐵(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))〉(comp‘𝐸)((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋)))((((1st ‘𝐺)‘𝑋)(2nd ‘𝐹)((1st ‘𝐿)‘𝑋))‘(𝑆‘𝑋)))) = ((𝑈‘((1st ‘𝑁)‘𝑋))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑋)))((𝐴(〈((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋)), ((1st ‘𝑃)‘((1st ‘𝑄)‘𝑋))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))𝐵)(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑋)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑋))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑋)))((((1st ‘𝐺)‘𝑋)(2nd ‘𝐹)((1st ‘𝐿)‘𝑋))‘(𝑆‘𝑋))))) | ||
Theorem | fucocolem2 48938* | Lemma for fucoco 48941. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.) |
⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) & ⊢ ∗ = (comp‘𝐷) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))(𝑅‘((1st ‘𝑁)‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝑁)‘𝑥))‘((𝑉‘𝑥)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐿)‘𝑥)〉 ∗ ((1st ‘𝑁)‘𝑥))(𝑆‘𝑥)))))) | ||
Theorem | fucocolem3 48939* | Lemma for fucoco 48941. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) & ⊢ ∗ = (comp‘𝐷) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))(((𝑅‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐿)‘𝑥)(2nd ‘𝐹)((1st ‘𝑁)‘𝑥))‘(𝑉‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐿)‘𝑥))‘(𝑆‘𝑥)))))) | ||
Theorem | fucocolem4 48940* | Lemma for fucoco 48941. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.) |
⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ ∙ = (comp‘𝑄) ⇒ ⊢ (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st ‘𝑁)‘𝑥))(〈((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝑁)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((((1st ‘𝐿)‘𝑥)(2nd ‘𝐾)((1st ‘𝑁)‘𝑥))‘(𝑉‘𝑥)))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝑀)‘((1st ‘𝑁)‘𝑥)))((𝑅‘((1st ‘𝐿)‘𝑥))(〈((1st ‘𝐹)‘((1st ‘𝐺)‘𝑥)), ((1st ‘𝐹)‘((1st ‘𝐿)‘𝑥))〉(comp‘𝐸)((1st ‘𝐾)‘((1st ‘𝐿)‘𝑥)))((((1st ‘𝐺)‘𝑥)(2nd ‘𝐹)((1st ‘𝐿)‘𝑥))‘(𝑆‘𝑥)))))) | ||
Theorem | fucoco 48941 | Composition in the source category is mapped to composition in the target. See also fucoco2 48942. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ (𝜑 → 𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾)) & ⊢ (𝜑 → 𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿)) & ⊢ (𝜑 → 𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀)) & ⊢ (𝜑 → 𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁)) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝑋 = 〈𝐹, 𝐺〉) & ⊢ (𝜑 → 𝑌 = 〈𝐾, 𝐿〉) & ⊢ (𝜑 → 𝑍 = 〈𝑀, 𝑁〉) & ⊢ (𝜑 → 𝐴 = 〈𝑅, 𝑆〉) & ⊢ (𝜑 → 𝐵 = 〈𝑈, 𝑉〉) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ ∙ = (comp‘𝑄) & ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ · = (comp‘𝑇) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) | ||
Theorem | fucoco2 48942 | Composition in the source category is mapped to composition in the target. See also fucoco 48941. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ · = (comp‘𝑇) & ⊢ ∙ = (comp‘𝑄) & ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ 𝐽 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐽𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(〈𝑋, 𝑌〉 · 𝑍)𝐴)) = (((𝑌𝑃𝑍)‘𝐵)(〈(𝑂‘𝑋), (𝑂‘𝑌)〉 ∙ (𝑂‘𝑍))((𝑋𝑃𝑌)‘𝐴))) | ||
Theorem | fucofunc 48943 |
The functor composition bifunctor is a functor.
However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let 𝐶 and 𝐷 be categories of one object and one morphism, for example, (SetCat‘1o), and 𝐸 be a category with two objects equipped with only two non-identity morphisms 𝑓 and 𝑔, pointing in the same direction. It is possible to map the ordered pair of natural transformations 〈𝑎, 𝑖〉, where 𝑎 sends to 𝑓 and 𝑖 is the identity natural transformation, to the other natural transformation 𝑏 sending to 𝑔, i.e., define the morphism part 𝑃 such that (𝑎(𝑈𝑃𝑉)𝑖) = 𝑏 such that (𝑏‘𝑋) = 𝑔 given hypotheses of fuco23 48925. Such construction should be provable as a functor. Given any 𝑃, it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of ∘func, iff both of the following hold. 1. It has the same form as df-fuco 48903 up to fuco23 48925, but ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑋) might be mapped to a different morphism in category 𝐸. See fucofulem2 48897 for some insights. 2. fuco22nat 48930, fucoid 48932, and fucoco 48941 are satisfied. (Contributed by Zhi Wang, 3-Oct-2025.) |
⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) & ⊢ 𝑄 = (𝐶 FuncCat 𝐸) & ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑂(𝑇 Func 𝑄)𝑃) | ||
Syntax | cthinc 48944 | Extend class notation with the class of thin categories. |
class ThinCat | ||
Definition | df-thinc 48945* | Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} | ||
Theorem | isthinc 48946* | The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) | ||
Theorem | isthinc2 48947* | A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ≼ 1o)) | ||
Theorem | isthinc3 48948* | A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔)) | ||
Theorem | thincc 48949 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | ||
Theorem | thinccd 48950 | A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
Theorem | thincssc 48951 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ThinCat ⊆ Cat | ||
Theorem | isthincd2lem1 48952* | Lemma for isthincd2 48963 and thincmo2 48953. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | thincmo2 48953 | Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | thincmo 48954* | There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
Theorem | thincmoALT 48955* | Alternate proof for thincmo 48954. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
Theorem | thincmod 48956* | At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
Theorem | thincn0eu 48957* | In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
Theorem | thincid 48958 | In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
Theorem | thincmon 48959 | In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon 49027. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
Theorem | thincepi 48960 | In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 49028. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
Theorem | isthincd2lem2 48961* | Lemma for isthincd2 48963. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
Theorem | isthincd 48962* | The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
Theorem | isthincd2 48963* | The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
Theorem | oppcthin 48964 | The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) | ||
Theorem | subthinc 48965 | A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐷 ∈ ThinCat) | ||
Theorem | functhinclem1 48966* | Lemma for functhinc 48970. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ↔ 𝐺 = 𝐾)) | ||
Theorem | functhinclem2 48967* | Lemma for functhinc 48970. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | ||
Theorem | functhinclem3 48968* | Lemma for functhinc 48970. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) & ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) & ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | ||
Theorem | functhinclem4 48969* | Lemma for functhinc 48970. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ · = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) | ||
Theorem | functhinc 48970* | A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 48846). (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ 𝐺 = 𝐾)) | ||
Theorem | fullthinc 48971* | A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) | ||
Theorem | fullthinc2 48972 | A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) | ||
Theorem | thincfth 48973 | A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | ||
Theorem | thincciso 48974* | Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) | ||
Theorem | thinccisod 48975* | Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | ||
Theorem | 0thincg 48976 | Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat) | ||
Theorem | 0thinc 48977 | The empty category (see 0cat 17743) is thin. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ∅ ∈ ThinCat | ||
Theorem | indthinc 48978* | An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are ∅. This is a special case of prsthinc 48980, where ≤ = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
Theorem | indthincALT 48979* | An alternate proof for indthinc 48978 assuming more axioms including ax-pow 5374 and ax-un 7761. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
Theorem | prsthinc 48980* | Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 48845 and catprs2 48846 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
Theorem | setcthin 48981* | A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (SetCat‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∃*𝑝 𝑝 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
Theorem | setc2othin 48982 | The category (SetCat‘2o) is thin. A special case of setcthin 48981. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (SetCat‘2o) ∈ ThinCat | ||
Theorem | thincsect 48983 | In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) | ||
Theorem | thincsect2 48984 | In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
Theorem | thincinv 48985 | In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺 (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) | ||
Theorem | thinciso 48986 | In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) | ||
Theorem | thinccic 48987 | In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) | ||
Syntax | cprstc 48988 | Class function defining preordered sets as categories. |
class ProsetToCat | ||
Definition | df-prstc 48989 |
Definition of the function converting a preordered set to a category.
Justified by prsthinc 48980.
This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 48992, prstchom 49003, and prstcthin 49002. Other important properties include prstcbas 48993, prstcleval 48994, prstcle 48996, prstcocval 48997, prstcoc 48999, prstchom2 49004, and prstcprs 49001. Use those instead. Note that the defining property prstchom 49003 is equivalent to prstchom2 49004 given prstcthin 49002. See thincn0eu 48957 for justification. "ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
Theorem | prstcval 48990 | Lemma for prstcnidlem 48991 and prstcthin 49002. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
Theorem | prstcnidlem 48991 | Lemma for prstcnid 48992 and prstchomval 49000. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) | ||
Theorem | prstcnid 48992 | Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) & ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) | ||
Theorem | prstcbas 48993 | The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
Theorem | prstcleval 48994 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → ≤ = (le‘𝐶)) | ||
Theorem | prstclevalOLD 48995 | Obsolete proof of prstcleval 48994 as of 12-Nov-2024. Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → ≤ = (le‘𝐶)) | ||
Theorem | prstcle 48996 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ 𝑋(le‘𝐶)𝑌)) | ||
Theorem | prstcocval 48997 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ⊥ = (oc‘𝐶)) | ||
Theorem | prstcocvalOLD 48998 | Obsolete proof of prstcocval 48997 as of 12-Nov-2024. Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ⊥ = (oc‘𝐶)) | ||
Theorem | prstcoc 48999 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑋) = ((oc‘𝐶)‘𝑋)) | ||
Theorem | prstchomval 49000 | Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) ⇒ ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |