| Metamath
Proof Explorer Theorem List (p. 490 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | restcls2lem 48901 | A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑌) | ||
| Theorem | restcls2 48902 | A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
| Theorem | restclsseplem 48903 | Lemma for restclssep 48904. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ⊆ 𝑌) ⇒ ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) | ||
| Theorem | restclssep 48904 | Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) | ||
| Theorem | cnneiima 48905 | Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑁 ∈ ((nei‘𝐾)‘𝑇)) & ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝑇)) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝑁) ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | iooii 48906 | Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) | ||
| Theorem | icccldii 48907 | Closed intervals are closed sets of II. Note that iccss 13375, iccordt 23101, and ordtresticc 23110 are proved from ixxss12 13326, ordtcld3 23086, and ordtrest2 23091, respectively. An alternate proof uses restcldi 23060, dfii2 24775, and icccld 24654. (Contributed by Zhi Wang, 8-Sep-2024.) |
| ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘II)) | ||
| Theorem | i0oii 48908 | (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝐴 ≤ 1 → (0[,)𝐴) ∈ II) | ||
| Theorem | io1ii 48909 | (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (0 ≤ 𝐴 → (𝐴(,]1) ∈ II) | ||
| Theorem | sepnsepolem1 48910* | Lemma for sepnsepo 48912. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐽 (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) | ||
| Theorem | sepnsepolem2 48911* | Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 48912. Proof could be shortened by 1 step using ssdisjdr 48797. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | sepnsepo 48912* | Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | sepdisj 48913 | Separated sets are disjoint. Note that in general separatedness also requires 𝑇 ⊆ ∪ 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) ⇒ ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | ||
| Theorem | seposep 48914* | If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 48912. The relationship between separatedness and closure is also seen in isnrm 23222, isnrm2 23245, isnrm3 23246. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))) | ||
| Theorem | sepcsepo 48915* | If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 48912 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 48893, adantr 480, and rexlimiva 3126. (Contributed by Zhi Wang, 8-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| Theorem | sepfsepc 48916* | If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| Theorem | seppsepf 48917 | If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) | ||
| Theorem | seppcld 48918* | If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) | ||
| Theorem | isnrm4 48919* | A topological space is normal iff any two disjoint closed sets are separated by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝐽)‘𝑐)∃𝑦 ∈ ((nei‘𝐽)‘𝑑)(𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | dfnrm2 48920* | A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 23204. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} | ||
| Theorem | dfnrm3 48921* | A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm 23204. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝑗)‘𝑐)∃𝑦 ∈ ((nei‘𝑗)‘𝑑)(𝑥 ∩ 𝑦) = ∅)} | ||
| Theorem | iscnrm3lem1 48922* | Lemma for iscnrm3 48940. Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ((𝐽 ↾t 𝑥) ∈ Top ∧ 𝜑))) | ||
| Theorem | iscnrm3lem2 48923* | Lemma for iscnrm3 48940 proving a biconditional on restricted universal quantifications. (Contributed by Zhi Wang, 3-Sep-2024.) |
| ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓 → ((𝑤 ∈ 𝐷 ∧ 𝑣 ∈ 𝐸) → 𝜒))) & ⊢ (𝜑 → (∀𝑤 ∈ 𝐷 ∀𝑣 ∈ 𝐸 𝜒 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜓))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓 ↔ ∀𝑤 ∈ 𝐷 ∀𝑣 ∈ 𝐸 𝜒)) | ||
| Theorem | iscnrm3lem4 48924 | Lemma for iscnrm3lem5 48925 and iscnrm3r 48936. (Contributed by Zhi Wang, 4-Sep-2024.) |
| ⊢ (𝜂 → (𝜓 → 𝜁)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜁 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
| Theorem | iscnrm3lem5 48925* | Lemma for iscnrm3l 48939. (Contributed by Zhi Wang, 3-Sep-2024.) |
| ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜒 ↔ 𝜃)) & ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → (𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊)) & ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝜓 → 𝜃) → 𝜎)) ⇒ ⊢ (𝜏 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 (𝜑 → 𝜒) → (𝜂 → (𝜁 → 𝜎)))) | ||
| Theorem | iscnrm3lem6 48926* | Lemma for iscnrm3lem7 48927. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑊 𝜓 → 𝜒)) | ||
| Theorem | iscnrm3lem7 48927* | Lemma for iscnrm3rlem8 48935 and iscnrm3llem2 48938 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝑧 = 𝑍 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝑊 → (𝜃 ↔ 𝜏)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → (𝑍 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝜏)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜒)) | ||
| Theorem | iscnrm3rlem1 48928 | Lemma for iscnrm3rlem2 48929. The hypothesis could be generalized to (𝜑 → (𝑆 ∖ 𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∖ 𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇)))) | ||
| Theorem | iscnrm3rlem2 48929 | Lemma for iscnrm3rlem3 48930. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) | ||
| Theorem | iscnrm3rlem3 48930 | Lemma for iscnrm3r 48936. The designed subspace is a subset of the original set; the two sets are closed sets in the subspace. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽)) → ((∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))) | ||
| Theorem | iscnrm3rlem4 48931 | Lemma for iscnrm3rlem8 48935. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑁) | ||
| Theorem | iscnrm3rlem5 48932 | Lemma for iscnrm3rlem6 48933. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) | ||
| Theorem | iscnrm3rlem6 48933 | Lemma for iscnrm3rlem7 48934. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ⇒ ⊢ (𝜑 → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂 ∈ 𝐽)) | ||
| Theorem | iscnrm3rlem7 48934 | Lemma for iscnrm3rlem8 48935. Open neighborhoods in the subspace topology are open neighborhoods in the original topology given that the subspace is an open set in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ⇒ ⊢ (𝜑 → 𝑂 ∈ 𝐽) | ||
| Theorem | iscnrm3rlem8 48935* | Lemma for iscnrm3r 48936. Disjoint open neighborhoods in the subspace topology are disjoint open neighborhoods in the original topology given that the subspace is an open set in the original topology. Therefore, given any two sets separated in the original topology and separated by open neighborhoods in the subspace topology, they must be separated by open neighborhoods in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | ||
| Theorem | iscnrm3r 48936* | Lemma for iscnrm3 48940. If all subspaces of a topology are normal, i.e., two disjoint closed sets can be separated by open neighborhoods, then in the original topology two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 ∪ 𝐽∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → ((𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))))) | ||
| Theorem | iscnrm3llem1 48937 | Lemma for iscnrm3l 48939. Closed sets in the subspace are subsets of the underlying set of the original topology. (Contributed by Zhi Wang, 4-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (𝐶 ∈ 𝒫 ∪ 𝐽 ∧ 𝐷 ∈ 𝒫 ∪ 𝐽)) | ||
| Theorem | iscnrm3llem2 48938* | Lemma for iscnrm3l 48939. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 45049.) (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) | ||
| Theorem | iscnrm3l 48939* | Lemma for iscnrm3 48940. Given a topology 𝐽, if two separated sets can be separated by open neighborhoods, then all subspaces of the topology 𝐽 are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) → ((𝐶 ∩ 𝐷) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))))) | ||
| Theorem | iscnrm3 48940* | A completely normal topology is a topology in which two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | iscnrm3v 48941* | A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
| Theorem | iscnrm4 48942* | A completely normal topology is a topology in which two separated sets can be separated by neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
| ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅))) | ||
| Theorem | isprsd 48943* | Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐾 ∈ Proset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | lubeldm2 48944* | Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | glbeldm2 48945* | Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | lubeldm2d 48946* | Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | glbeldm2d 48947* | Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | lubsscl 48948 | If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈‘𝑇) = (𝑈‘𝑆))) | ||
| Theorem | glbsscl 48949 | If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) & ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) | ||
| Theorem | lubprlem 48950 | Lemma for lubprdm 48951 and lubpr 48952. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) | ||
| Theorem | lubprdm 48951 | The set of two comparable elements in a poset has LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | ||
| Theorem | lubpr 48952 | The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) | ||
| Theorem | glbprlem 48953 | Lemma for glbprdm 48954 and glbpr 48955. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) | ||
| Theorem | glbprdm 48954 | The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | ||
| Theorem | glbpr 48955 | The GLB of the set of two comparable elements in a poset is the less one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑋) | ||
| Theorem | joindm2 48956* | The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) | ||
| Theorem | joindm3 48957* | The join of any two elements always exists iff all unordered pairs have LUB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) | ||
| Theorem | meetdm2 48958* | The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) | ||
| Theorem | meetdm3 48959* | The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) | ||
| Theorem | posjidm 48960 | Poset join is idempotent. latjidm 18421 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) | ||
| Theorem | posmidm 48961 | Poset meet is idempotent. latmidm 18433 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) | ||
| Theorem | resiposbas 48962 | Construct a poset (resipos 48963) for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
| Theorem | resipos 48963 | A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) | ||
| Theorem | exbaspos 48964* | There exists a poset for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → ∃𝑘 ∈ Poset 𝐵 = (Base‘𝑘)) | ||
| Theorem | exbasprs 48965* | There exists a preordered set for any base set. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → ∃𝑘 ∈ Proset 𝐵 = (Base‘𝑘)) | ||
| Theorem | basresposfo 48966 | The base function restricted to the class of posets maps the class of posets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (Base ↾ Poset):Poset–onto→V | ||
| Theorem | basresprsfo 48967 | The base function restricted to the class of preordered sets maps the class of preordered sets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (Base ↾ Proset ): Proset –onto→V | ||
| Theorem | posnex 48968 | The class of posets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ Poset ∉ V | ||
| Theorem | prsnex 48969 | The class of preordered sets is a proper class. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ Proset ∉ V | ||
| Theorem | toslat 48970 | A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024.) |
| ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Lat) | ||
| Theorem | isclatd 48971* | The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → 𝑠 ∈ dom 𝑈) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → 𝑠 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 𝐾 ∈ CLat) | ||
| Theorem | intubeu 48972* | Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ (𝐶 ∈ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ ∀𝑦 ∈ 𝐵 (𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦)) ↔ 𝐶 = ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥})) | ||
| Theorem | unilbeu 48973* | Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ (𝐶 ∈ 𝐵 → ((𝐶 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶)) ↔ 𝐶 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴})) | ||
| Theorem | ipolublem 48974* | Lemma for ipolubdm 48975 and ipolub 48976. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑋 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑋 ≤ 𝑧)))) | ||
| Theorem | ipolubdm 48975* | The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) | ||
| Theorem | ipolub 48976* | The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18373 is in quantified form. mrelatlub 18521 could potentially be shortened using this. See mrelatlubALT 48983. (Contributed by Zhi Wang, 28-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) & ⊢ (𝜑 → 𝑇 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
| Theorem | ipoglblem 48977* | Lemma for ipoglbdm 48978 and ipoglb 48979. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) | ||
| Theorem | ipoglbdm 48978* | The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) | ||
| Theorem | ipoglb 48979* | The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18374 is in quantified form. mrelatglb 18519 could potentially be shortened using this. See mrelatglbALT 48984. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) & ⊢ (𝜑 → 𝑇 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) | ||
| Theorem | ipolub0 48980 | The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → ∩ 𝐹 ∈ 𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑈‘∅) = ∩ 𝐹) | ||
| Theorem | ipolub00 48981 | The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → ∅ ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑈‘∅) = ∅) | ||
| Theorem | ipoglb0 48982 | The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → ∪ 𝐹 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐹) | ||
| Theorem | mrelatlubALT 48983 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐿 = (lub‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) | ||
| Theorem | mrelatglbALT 48984 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) | ||
| Theorem | mreclat 48985 | A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) | ||
| Theorem | topclat 48986 | A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ CLat) | ||
| Theorem | toplatglb0 48987 | The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐽) | ||
| Theorem | toplatlub 48988 | Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ 𝐽) & ⊢ 𝑈 = (lub‘𝐼) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = ∪ 𝑆) | ||
| Theorem | toplatglb 48989 | Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ 𝐽) & ⊢ 𝐺 = (glb‘𝐼) & ⊢ (𝜑 → 𝑆 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) | ||
| Theorem | toplatjoin 48990 | Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ ∨ = (join‘𝐼) ⇒ ⊢ (𝜑 → (𝐴 ∨ 𝐵) = (𝐴 ∪ 𝐵)) | ||
| Theorem | toplatmeet 48991 | Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ ∧ = (meet‘𝐼) ⇒ ⊢ (𝜑 → (𝐴 ∧ 𝐵) = (𝐴 ∩ 𝐵)) | ||
| Theorem | topdlat 48992 | A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐼 = (toInc‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ DLat) | ||
| Theorem | elmgpcntrd 48993* | The center of a ring. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntr‘𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)𝑋)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑍) | ||
| Theorem | asclelbas 48994 | Lifted scalars are in the base set of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof shortened by Thierry Arnoux, 22-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) | ||
| Theorem | asclelbasALT 48995 | Alternate proof of asclelbas 48994. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) | ||
| Theorem | asclcntr 48996 | The algebra scalar lifting function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ 𝑀 = (mulGrp‘𝑊) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Cntr‘𝑀)) | ||
| Theorem | asclcom 48997 |
Scalars are commutative after being lifted.
However, the scalars themselves are not necessarily commutative if the algebra is not a faithful module. For example, Let 𝐹 be the 2 by 2 upper triangular matrix algebra over a commutative ring 𝑊. It is provable that 𝐹 is in general non-commutative. Define scalar multiplication 𝐶 · 𝑋 as multipying the top-left entry, which is a "vector" element of 𝑊, of the "scalar" 𝐶, which is now an upper triangular matrix, with the "vector" 𝑋 ∈ (Base‘𝑊). Equivalently, the algebra scalar lifting function is not necessarily injective unless the algebra is faithful. Therefore, all "scalar injection" was renamed. Alternate proof involves assa2ass 21772, assa2ass2 21773, and asclval 21789, by setting 𝑋 and 𝑌 the multiplicative identity of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ∗ = (.r‘𝐹) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘(𝐶 ∗ 𝐷)) = (𝐴‘(𝐷 ∗ 𝐶))) | ||
| Theorem | homf0 48998 | The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ ((Base‘𝐶) = ∅ ↔ (Homf ‘𝐶) = ∅) | ||
| Theorem | catprslem 48999* | Lemma for catprs 49000. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) | ||
| Theorem | catprs 49000* | A preorder can be extracted from a category. See catprs2 49001 for more details. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |