MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reuswap Structured version   Visualization version   GIF version

Theorem 2reuswap 3676
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
2reuswap (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2reuswap
StepHypRef Expression
1 df-rmo 3071 . . 3 (∃*𝑦𝐵 𝜑 ↔ ∃*𝑦(𝑦𝐵𝜑))
21ralbii 3090 . 2 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑))
3 df-ral 3068 . . . 4 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
4 moanimv 2621 . . . . 5 (∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
54albii 1823 . . . 4 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
63, 5bitr4i 277 . . 3 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
7 2euswapv 2632 . . . 4 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃!𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃!𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑))))
8 df-reu 3070 . . . . 5 (∃!𝑥𝐴𝑦𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
9 r19.42v 3276 . . . . . . . 8 (∃𝑦𝐵 (𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
10 df-rex 3069 . . . . . . . 8 (∃𝑦𝐵 (𝑥𝐴𝜑) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)))
119, 10bitr3i 276 . . . . . . 7 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)))
12 an12 641 . . . . . . . 8 ((𝑦𝐵 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1312exbii 1851 . . . . . . 7 (∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1411, 13bitri 274 . . . . . 6 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1514eubii 2585 . . . . 5 (∃!𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
168, 15bitri 274 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 ↔ ∃!𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
17 df-reu 3070 . . . . 5 (∃!𝑦𝐵𝑥𝐴 𝜑 ↔ ∃!𝑦(𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
18 r19.42v 3276 . . . . . . 7 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
19 df-rex 3069 . . . . . . 7 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2018, 19bitr3i 276 . . . . . 6 ((𝑦𝐵 ∧ ∃𝑥𝐴 𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2120eubii 2585 . . . . 5 (∃!𝑦(𝑦𝐵 ∧ ∃𝑥𝐴 𝜑) ↔ ∃!𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2217, 21bitri 274 . . . 4 (∃!𝑦𝐵𝑥𝐴 𝜑 ↔ ∃!𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
237, 16, 223imtr4g 295 . . 3 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
246, 23sylbi 216 . 2 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
252, 24sylbi 216 1 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783  wcel 2108  ∃*wmo 2538  ∃!weu 2568  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071
This theorem is referenced by:  reuxfrd  3678
  Copyright terms: Public domain W3C validator