MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralfw Structured version   Visualization version   GIF version

Theorem cbvralfw 3302
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 3358 with a disjoint variable condition, which does not require ax-10 2139, ax-13 2375. For a version not dependent on ax-11 2155 and ax-12, see cbvralvw 3235. (Contributed by NM, 7-Mar-2004.) Avoid ax-10 2139, ax-13 2375. (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbvralfw.1 𝑥𝐴
cbvralfw.2 𝑦𝐴
cbvralfw.3 𝑦𝜑
cbvralfw.4 𝑥𝜓
cbvralfw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvralfw (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvralfw
StepHypRef Expression
1 cbvralfw.2 . . . . 5 𝑦𝐴
21nfcri 2895 . . . 4 𝑦 𝑥𝐴
3 cbvralfw.3 . . . 4 𝑦𝜑
42, 3nfim 1894 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvralfw.1 . . . . 5 𝑥𝐴
65nfcri 2895 . . . 4 𝑥 𝑦𝐴
7 cbvralfw.4 . . . 4 𝑥𝜓
86, 7nfim 1894 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2822 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvralfw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvalv1 2342 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦(𝑦𝐴𝜓))
13 df-ral 3060 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
14 df-ral 3060 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
1512, 13, 143bitr4i 303 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1780  wcel 2106  wnfc 2888  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-clel 2814  df-nfc 2890  df-ral 3060
This theorem is referenced by:  cbvrexfw  3303  cbvralw  3304  reusv2lem4  5407  reusv2  5409  ffnfvf  7140  nnwof  12954  nnindf  32826  scottexf  38155  scott0f  38156  evth2f  44953  evthf  44965  fmptff  45215  supxrleubrnmptf  45401  stoweidlem14  45970  stoweidlem28  45984  stoweidlem59  46015
  Copyright terms: Public domain W3C validator