![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralfw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 3368 with a disjoint variable condition, which does not require ax-10 2141, ax-13 2380. For a version not dependent on ax-11 2158 and ax-12, see cbvralvw 3243. (Contributed by NM, 7-Mar-2004.) Avoid ax-10 2141, ax-13 2380. (Revised by GG, 23-May-2024.) |
Ref | Expression |
---|---|
cbvralfw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvralfw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvralfw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvralfw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvralfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralfw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralfw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
3 | cbvralfw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | 2, 3 | nfim 1895 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 → 𝜑) |
5 | cbvralfw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
6 | 5 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
7 | cbvralfw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
8 | 6, 7 | nfim 1895 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓) |
9 | eleq1w 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | cbvralfw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
11 | 9, 10 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → 𝜓))) |
12 | 4, 8, 11 | cbvalv1 2347 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
13 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
14 | df-ral 3068 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
15 | 12, 13, 14 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-clel 2819 df-nfc 2895 df-ral 3068 |
This theorem is referenced by: cbvrexfw 3311 cbvralw 3312 reusv2lem4 5419 reusv2 5421 ffnfvf 7154 nnwof 12979 nnindf 32823 scottexf 38128 scott0f 38129 evth2f 44915 evthf 44927 fmptff 45179 supxrleubrnmptf 45366 stoweidlem14 45935 stoweidlem28 45949 stoweidlem59 45980 |
Copyright terms: Public domain | W3C validator |