| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralfw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 3331 with a disjoint variable condition, which does not require ax-10 2142, ax-13 2370. For a version not dependent on ax-11 2158 and ax-12, see cbvralvw 3213. (Contributed by NM, 7-Mar-2004.) Avoid ax-10 2142, ax-13 2370. (Revised by GG, 23-May-2024.) |
| Ref | Expression |
|---|---|
| cbvralfw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvralfw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvralfw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvralfw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvralfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralfw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralfw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | cbvralfw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfim 1896 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 → 𝜑) |
| 5 | cbvralfw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvralfw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓) |
| 9 | eleq1w 2811 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvralfw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → 𝜓))) |
| 12 | 4, 8, 11 | cbvalv1 2339 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
| 13 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 14 | df-ral 3045 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
| 15 | 12, 13, 14 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 |
| This theorem is referenced by: cbvrexfw 3277 cbvralw 3278 reusv2lem4 5351 reusv2 5353 ffnfvf 7074 nnwof 12849 nnindf 32794 scottexf 38155 scott0f 38156 evth2f 45002 evthf 45014 fmptff 45256 supxrleubrnmptf 45440 stoweidlem14 46005 stoweidlem28 46019 stoweidlem59 46050 |
| Copyright terms: Public domain | W3C validator |