MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralfw Structured version   Visualization version   GIF version

Theorem cbvralfw 3276
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 3331 with a disjoint variable condition, which does not require ax-10 2142, ax-13 2370. For a version not dependent on ax-11 2158 and ax-12, see cbvralvw 3213. (Contributed by NM, 7-Mar-2004.) Avoid ax-10 2142, ax-13 2370. (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbvralfw.1 𝑥𝐴
cbvralfw.2 𝑦𝐴
cbvralfw.3 𝑦𝜑
cbvralfw.4 𝑥𝜓
cbvralfw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvralfw (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvralfw
StepHypRef Expression
1 cbvralfw.2 . . . . 5 𝑦𝐴
21nfcri 2883 . . . 4 𝑦 𝑥𝐴
3 cbvralfw.3 . . . 4 𝑦𝜑
42, 3nfim 1896 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvralfw.1 . . . . 5 𝑥𝐴
65nfcri 2883 . . . 4 𝑥 𝑦𝐴
7 cbvralfw.4 . . . 4 𝑥𝜓
86, 7nfim 1896 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvralfw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvalv1 2339 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦(𝑦𝐴𝜓))
13 df-ral 3045 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
14 df-ral 3045 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
1512, 13, 143bitr4i 303 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wnf 1783  wcel 2109  wnfc 2876  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-clel 2803  df-nfc 2878  df-ral 3045
This theorem is referenced by:  cbvrexfw  3277  cbvralw  3278  reusv2lem4  5351  reusv2  5353  ffnfvf  7074  nnwof  12849  nnindf  32794  scottexf  38155  scott0f  38156  evth2f  45002  evthf  45014  fmptff  45256  supxrleubrnmptf  45440  stoweidlem14  46005  stoweidlem28  46019  stoweidlem59  46050
  Copyright terms: Public domain W3C validator