![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralfw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 3343 with a disjoint variable condition, which does not require ax-10 2129, ax-13 2365. For a version not dependent on ax-11 2146 and ax-12, see cbvralvw 3224. (Contributed by NM, 7-Mar-2004.) Avoid ax-10 2129, ax-13 2365. (Revised by GG, 23-May-2024.) |
Ref | Expression |
---|---|
cbvralfw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvralfw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvralfw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvralfw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvralfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralfw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralfw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2882 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
3 | cbvralfw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | 2, 3 | nfim 1891 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 → 𝜑) |
5 | cbvralfw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
6 | 5 | nfcri 2882 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
7 | cbvralfw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
8 | 6, 7 | nfim 1891 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓) |
9 | eleq1w 2808 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | cbvralfw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
11 | 9, 10 | imbi12d 343 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → 𝜓))) |
12 | 4, 8, 11 | cbvalv1 2331 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
13 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
14 | df-ral 3051 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
15 | 12, 13, 14 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-11 2146 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-nf 1778 df-clel 2802 df-nfc 2877 df-ral 3051 |
This theorem is referenced by: cbvrexfw 3292 cbvralw 3293 reusv2lem4 5401 reusv2 5403 ffnfvf 7129 nnwof 12931 nnindf 32667 scottexf 37772 scott0f 37773 evth2f 44519 evthf 44531 fmptff 44784 supxrleubrnmptf 44971 stoweidlem14 45540 stoweidlem28 45554 stoweidlem59 45585 |
Copyright terms: Public domain | W3C validator |