| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexdifpr | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) (Proof shortened by Wolf Lammen, 15-May-2025.) |
| Ref | Expression |
|---|---|
| rexdifpr | ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑))) | |
| 2 | eldifpr 4611 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) | |
| 3 | 3anass 1094 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
| 4 | 2, 3 | bitri 275 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
| 5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑)) |
| 6 | df-3an 1088 | . . . 4 ⊢ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑) ↔ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑)) | |
| 7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑))) |
| 8 | 1, 5, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) |
| 9 | 8 | rexbii2 3075 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∖ cdif 3899 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rex 3057 df-v 3438 df-dif 3905 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: usgr2pth0 29741 |
| Copyright terms: Public domain | W3C validator |