MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifpr Structured version   Visualization version   GIF version

Theorem rexdifpr 4572
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.)
Assertion
Ref Expression
rexdifpr (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))

Proof of Theorem rexdifpr
StepHypRef Expression
1 eldifpr 4571 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴𝑥𝐵𝑥𝐶))
2 3anass 1092 . . . . 5 ((𝑥𝐴𝑥𝐵𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
31, 2bitri 278 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
43anbi1i 626 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑))
5 anass 472 . . . 4 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)))
6 df-3an 1086 . . . . . 6 ((𝑥𝐵𝑥𝐶𝜑) ↔ ((𝑥𝐵𝑥𝐶) ∧ 𝜑))
76bicomi 227 . . . . 5 (((𝑥𝐵𝑥𝐶) ∧ 𝜑) ↔ (𝑥𝐵𝑥𝐶𝜑))
87anbi2i 625 . . . 4 ((𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
95, 8bitri 278 . . 3 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
104, 9bitri 278 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
1110rexbii2 3233 1 (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084  wcel 2114  wne 3011  wrex 3131  cdif 3905  {cpr 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2794
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-ne 3012  df-rex 3136  df-v 3471  df-dif 3911  df-un 3913  df-sn 4540  df-pr 4542
This theorem is referenced by:  usgr2pth0  27552
  Copyright terms: Public domain W3C validator