MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifpr Structured version   Visualization version   GIF version

Theorem rexdifpr 4658
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) (Proof shortened by Wolf Lammen, 15-May-2025.)
Assertion
Ref Expression
rexdifpr (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))

Proof of Theorem rexdifpr
StepHypRef Expression
1 anass 468 . . 3 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)))
2 eldifpr 4657 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴𝑥𝐵𝑥𝐶))
3 3anass 1094 . . . . 5 ((𝑥𝐴𝑥𝐵𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
42, 3bitri 275 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
54anbi1i 624 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑))
6 df-3an 1088 . . . 4 ((𝑥𝐵𝑥𝐶𝜑) ↔ ((𝑥𝐵𝑥𝐶) ∧ 𝜑))
76anbi2i 623 . . 3 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)) ↔ (𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)))
81, 5, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
98rexbii2 3089 1 (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2107  wne 2939  wrex 3069  cdif 3947  {cpr 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-rex 3070  df-v 3481  df-dif 3953  df-un 3955  df-sn 4626  df-pr 4628
This theorem is referenced by:  usgr2pth0  29786
  Copyright terms: Public domain W3C validator