MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdifpr Structured version   Visualization version   GIF version

Theorem rexdifpr 4681
Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) (Proof shortened by Wolf Lammen, 15-May-2025.)
Assertion
Ref Expression
rexdifpr (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))

Proof of Theorem rexdifpr
StepHypRef Expression
1 anass 468 . . 3 (((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)))
2 eldifpr 4680 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴𝑥𝐵𝑥𝐶))
3 3anass 1095 . . . . 5 ((𝑥𝐴𝑥𝐵𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
42, 3bitri 275 . . . 4 (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
54anbi1i 623 . . 3 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ∧ 𝜑))
6 df-3an 1089 . . . 4 ((𝑥𝐵𝑥𝐶𝜑) ↔ ((𝑥𝐵𝑥𝐶) ∧ 𝜑))
76anbi2i 622 . . 3 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)) ↔ (𝑥𝐴 ∧ ((𝑥𝐵𝑥𝐶) ∧ 𝜑)))
81, 5, 73bitr4i 303 . 2 ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶𝜑)))
98rexbii2 3096 1 (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝑥𝐶𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946  wrex 3076  cdif 3973  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rex 3077  df-v 3490  df-dif 3979  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  usgr2pth0  29801
  Copyright terms: Public domain W3C validator