|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexdifpr | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018.) (Proof shortened by Wolf Lammen, 15-May-2025.) | 
| Ref | Expression | 
|---|---|
| rexdifpr | ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑))) | |
| 2 | eldifpr 4657 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) | |
| 3 | 3anass 1094 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
| 4 | 2, 3 | bitri 275 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | 
| 5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) ∧ 𝜑)) | 
| 6 | df-3an 1088 | . . . 4 ⊢ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑) ↔ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑)) | |
| 7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ∧ 𝜑))) | 
| 8 | 1, 5, 7 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶}) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑))) | 
| 9 | 8 | rexbii2 3089 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∖ {𝐵, 𝐶})𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶 ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 ∖ cdif 3947 {cpr 4627 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rex 3070 df-v 3481 df-dif 3953 df-un 3955 df-sn 4626 df-pr 4628 | 
| This theorem is referenced by: usgr2pth0 29786 | 
| Copyright terms: Public domain | W3C validator |