Proof of Theorem usgr2pth0
Step | Hyp | Ref
| Expression |
1 | | usgr2pthlem.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | usgr2pthlem.i |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
3 | 1, 2 | usgr2pth 28132 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
4 | | r19.42v 3279 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(𝑉 ∖ {𝑥, 𝑧})(𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑧 ≠ 𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
5 | | rexdifpr 4594 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(𝑉 ∖ {𝑥, 𝑧})(𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
6 | 4, 5 | bitr3i 276 |
. . . . . . . 8
⊢ ((𝑧 ≠ 𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
7 | 6 | rexbii 3181 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝑉 (𝑧 ≠ 𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑧 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
8 | | rexcom 3234 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝑉 ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
9 | | df-3an 1088 |
. . . . . . . . . . 11
⊢ ((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧) ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
10 | | anass 469 |
. . . . . . . . . . 11
⊢ ((((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧) ∧ 𝑧 ≠ 𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧) ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
11 | | anass 469 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦) ∧ 𝑦 ≠ 𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦) ∧ (𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
12 | | anass 469 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧) ∧ 𝑧 ≠ 𝑥) ↔ (𝑦 ≠ 𝑥 ∧ (𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥))) |
13 | | ancom 461 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≠ 𝑥 ∧ (𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥)) ↔ ((𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥) ∧ 𝑦 ≠ 𝑥)) |
14 | | necom 2997 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ≠ 𝑧 ↔ 𝑧 ≠ 𝑦) |
15 | 14 | anbi2ci 625 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥) ↔ (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦)) |
16 | 15 | anbi1i 624 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥) ∧ 𝑦 ≠ 𝑥) ↔ ((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦) ∧ 𝑦 ≠ 𝑥)) |
17 | 12, 13, 16 | 3bitri 297 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧) ∧ 𝑧 ≠ 𝑥) ↔ ((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦) ∧ 𝑦 ≠ 𝑥)) |
18 | 17 | anbi1i 624 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧) ∧ 𝑧 ≠ 𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦) ∧ 𝑦 ≠ 𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
19 | | df-3an 1088 |
. . . . . . . . . . . 12
⊢ ((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ (𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ((𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦) ∧ (𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
20 | 11, 18, 19 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢ ((((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧) ∧ 𝑧 ≠ 𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ (𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
21 | 9, 10, 20 | 3bitr2i 299 |
. . . . . . . . . 10
⊢ ((𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ (𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
22 | 21 | rexbii 3181 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑧 ∈ 𝑉 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ (𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
23 | | rexdifpr 4594 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥, 𝑦})(𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑧 ∈ 𝑉 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ (𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
24 | | r19.42v 3279 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥, 𝑦})(𝑦 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑦 ≠ 𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
25 | 22, 23, 24 | 3bitr2i 299 |
. . . . . . . 8
⊢
(∃𝑧 ∈
𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ (𝑦 ≠ 𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
26 | 25 | rexbii 3181 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝑉 ∃𝑧 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ (𝑧 ≠ 𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
27 | 7, 8, 26 | 3bitri 297 |
. . . . . 6
⊢
(∃𝑧 ∈
𝑉 (𝑧 ≠ 𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
28 | | rexdifsn 4727 |
. . . . . 6
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑧 ∈ 𝑉 (𝑧 ≠ 𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
29 | | rexdifsn 4727 |
. . . . . 6
⊢
(∃𝑦 ∈
(𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
30 | 27, 28, 29 | 3bitr4i 303 |
. . . . 5
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) |
31 | 30 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ 𝑉) → (∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
32 | 31 | rexbidva 3225 |
. . 3
⊢ (𝐺 ∈ USGraph →
(∃𝑥 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) |
33 | 32 | 3anbi3d 1441 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |
34 | 3, 33 | bitrd 278 |
1
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) |