MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pth0 Structured version   Visualization version   GIF version

Theorem usgr2pth0 29595
Description: In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtxβ€˜πΊ)
usgr2pthlem.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
usgr2pth0 (𝐺 ∈ USGraph β†’ ((𝐹(Pathsβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
Distinct variable groups:   π‘₯,𝐹,𝑦,𝑧   π‘₯,𝐺,𝑦,𝑧   π‘₯,𝐼,𝑦,𝑧   π‘₯,𝑃,𝑦,𝑧   π‘₯,𝑉,𝑦,𝑧

Proof of Theorem usgr2pth0
StepHypRef Expression
1 usgr2pthlem.v . . 3 𝑉 = (Vtxβ€˜πΊ)
2 usgr2pthlem.i . . 3 𝐼 = (iEdgβ€˜πΊ)
31, 2usgr2pth 29594 . 2 (𝐺 ∈ USGraph β†’ ((𝐹(Pathsβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
4 r19.42v 3181 . . . . . . . . 9 (βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
5 rexdifpr 4655 . . . . . . . . 9 (βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
64, 5bitr3i 276 . . . . . . . 8 ((𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
76rexbii 3084 . . . . . . 7 (βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘§ ∈ 𝑉 βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
8 rexcom 3278 . . . . . . 7 (βˆƒπ‘§ ∈ 𝑉 βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ βˆƒπ‘¦ ∈ 𝑉 βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
9 df-3an 1086 . . . . . . . . . . 11 ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
10 anass 467 . . . . . . . . . . 11 ((((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
11 anass 467 . . . . . . . . . . . 12 ((((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
12 anass 467 . . . . . . . . . . . . . 14 (((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ↔ (𝑦 β‰  π‘₯ ∧ (𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯)))
13 ancom 459 . . . . . . . . . . . . . 14 ((𝑦 β‰  π‘₯ ∧ (𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯)) ↔ ((𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯) ∧ 𝑦 β‰  π‘₯))
14 necom 2984 . . . . . . . . . . . . . . . 16 (𝑦 β‰  𝑧 ↔ 𝑧 β‰  𝑦)
1514anbi2ci 623 . . . . . . . . . . . . . . 15 ((𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯) ↔ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦))
1615anbi1i 622 . . . . . . . . . . . . . 14 (((𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯) ∧ 𝑦 β‰  π‘₯) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯))
1712, 13, 163bitri 296 . . . . . . . . . . . . 13 (((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯))
1817anbi1i 622 . . . . . . . . . . . 12 ((((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
19 df-3an 1086 . . . . . . . . . . . 12 ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
2011, 18, 193bitr4i 302 . . . . . . . . . . 11 ((((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
219, 10, 203bitr2i 298 . . . . . . . . . 10 ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
2221rexbii 3084 . . . . . . . . 9 (βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
23 rexdifpr 4655 . . . . . . . . 9 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
24 r19.42v 3181 . . . . . . . . 9 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
2522, 23, 243bitr2i 298 . . . . . . . 8 (βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
2625rexbii 3084 . . . . . . 7 (βˆƒπ‘¦ ∈ 𝑉 βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
277, 8, 263bitri 296 . . . . . 6 (βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
28 rexdifsn 4791 . . . . . 6 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
29 rexdifsn 4791 . . . . . 6 (βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
3027, 28, 293bitr4i 302 . . . . 5 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))
3130a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ π‘₯ ∈ 𝑉) β†’ (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
3231rexbidva 3167 . . 3 (𝐺 ∈ USGraph β†’ (βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
33323anbi3d 1438 . 2 (𝐺 ∈ USGraph β†’ ((𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
343, 33bitrd 278 1 (𝐺 ∈ USGraph β†’ ((𝐹(Pathsβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060   βˆ– cdif 3936  {csn 4622  {cpr 4624   class class class wbr 5141  dom cdm 5670  β€“1-1β†’wf1 6538  β€˜cfv 6541  (class class class)co 7414  0cc0 11136  1c1 11137  2c2 12295  ...cfz 13514  ..^cfzo 13657  β™―chash 14319  Vtxcvtx 28825  iEdgciedg 28826  USGraphcusgr 28978  Pathscpths 29542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-oadd 8487  df-er 8721  df-map 8843  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13515  df-fzo 13658  df-hash 14320  df-word 14495  df-concat 14551  df-s1 14576  df-s2 14829  df-s3 14830  df-edg 28877  df-uhgr 28887  df-upgr 28911  df-umgr 28912  df-uspgr 28979  df-usgr 28980  df-wlks 29429  df-wlkson 29430  df-trls 29522  df-trlson 29523  df-pths 29546  df-spths 29547  df-pthson 29548  df-spthson 29549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator