MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pth0 Structured version   Visualization version   GIF version

Theorem usgr2pth0 29764
Description: In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtx‘𝐺)
usgr2pthlem.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgr2pth0 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐼,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem usgr2pth0
StepHypRef Expression
1 usgr2pthlem.v . . 3 𝑉 = (Vtx‘𝐺)
2 usgr2pthlem.i . . 3 𝐼 = (iEdg‘𝐺)
31, 2usgr2pth 29763 . 2 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
4 r19.42v 3165 . . . . . . . . 9 (∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
5 rexdifpr 4613 . . . . . . . . 9 (∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
64, 5bitr3i 277 . . . . . . . 8 ((𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
76rexbii 3080 . . . . . . 7 (∃𝑧𝑉 (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑧𝑉𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
8 rexcom 3262 . . . . . . 7 (∃𝑧𝑉𝑦𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑦𝑉𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
9 df-3an 1088 . . . . . . . . . . 11 ((𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ((𝑦𝑥𝑦𝑧) ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
10 anass 468 . . . . . . . . . . 11 ((((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ((𝑦𝑥𝑦𝑧) ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
11 anass 468 . . . . . . . . . . . 12 ((((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ((𝑧𝑥𝑧𝑦) ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
12 anass 468 . . . . . . . . . . . . . 14 (((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ↔ (𝑦𝑥 ∧ (𝑦𝑧𝑧𝑥)))
13 ancom 460 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ (𝑦𝑧𝑧𝑥)) ↔ ((𝑦𝑧𝑧𝑥) ∧ 𝑦𝑥))
14 necom 2982 . . . . . . . . . . . . . . . 16 (𝑦𝑧𝑧𝑦)
1514anbi2ci 625 . . . . . . . . . . . . . . 15 ((𝑦𝑧𝑧𝑥) ↔ (𝑧𝑥𝑧𝑦))
1615anbi1i 624 . . . . . . . . . . . . . 14 (((𝑦𝑧𝑧𝑥) ∧ 𝑦𝑥) ↔ ((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥))
1712, 13, 163bitri 297 . . . . . . . . . . . . 13 (((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ↔ ((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥))
1817anbi1i 624 . . . . . . . . . . . 12 ((((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (((𝑧𝑥𝑧𝑦) ∧ 𝑦𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
19 df-3an 1088 . . . . . . . . . . . 12 ((𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ((𝑧𝑥𝑧𝑦) ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
2011, 18, 193bitr4i 303 . . . . . . . . . . 11 ((((𝑦𝑥𝑦𝑧) ∧ 𝑧𝑥) ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
219, 10, 203bitr2i 299 . . . . . . . . . 10 ((𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
2221rexbii 3080 . . . . . . . . 9 (∃𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑧𝑉 (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
23 rexdifpr 4613 . . . . . . . . 9 (∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑧𝑉 (𝑧𝑥𝑧𝑦 ∧ (𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
24 r19.42v 3165 . . . . . . . . 9 (∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(𝑦𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
2522, 23, 243bitr2i 299 . . . . . . . 8 (∃𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
2625rexbii 3080 . . . . . . 7 (∃𝑦𝑉𝑧𝑉 (𝑦𝑥𝑦𝑧 ∧ (𝑧𝑥 ∧ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))) ↔ ∃𝑦𝑉 (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
277, 8, 263bitri 297 . . . . . 6 (∃𝑧𝑉 (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ ∃𝑦𝑉 (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
28 rexdifsn 4747 . . . . . 6 (∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑧𝑉 (𝑧𝑥 ∧ ∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
29 rexdifsn 4747 . . . . . 6 (∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦𝑉 (𝑦𝑥 ∧ ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
3027, 28, 293bitr4i 303 . . . . 5 (∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))
3130a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑥𝑉) → (∃𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
3231rexbidva 3155 . . 3 (𝐺 ∈ USGraph → (∃𝑥𝑉𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))
33323anbi3d 1444 . 2 (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑧 ∈ (𝑉 ∖ {𝑥})∃𝑦 ∈ (𝑉 ∖ {𝑥, 𝑧})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
343, 33bitrd 279 1 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cdif 3895  {csn 4577  {cpr 4579   class class class wbr 5095  dom cdm 5621  1-1wf1 6486  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018  2c2 12191  ...cfz 13414  ..^cfzo 13561  chash 14244  Vtxcvtx 28995  iEdgciedg 28996  USGraphcusgr 29148  Pathscpths 29709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-s2 14762  df-s3 14763  df-edg 29047  df-uhgr 29057  df-upgr 29081  df-umgr 29082  df-uspgr 29149  df-usgr 29150  df-wlks 29599  df-wlkson 29600  df-trls 29690  df-trlson 29691  df-pths 29713  df-spths 29714  df-pthson 29715  df-spthson 29716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator