MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pth0 Structured version   Visualization version   GIF version

Theorem usgr2pth0 29531
Description: In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtxβ€˜πΊ)
usgr2pthlem.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
usgr2pth0 (𝐺 ∈ USGraph β†’ ((𝐹(Pathsβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
Distinct variable groups:   π‘₯,𝐹,𝑦,𝑧   π‘₯,𝐺,𝑦,𝑧   π‘₯,𝐼,𝑦,𝑧   π‘₯,𝑃,𝑦,𝑧   π‘₯,𝑉,𝑦,𝑧

Proof of Theorem usgr2pth0
StepHypRef Expression
1 usgr2pthlem.v . . 3 𝑉 = (Vtxβ€˜πΊ)
2 usgr2pthlem.i . . 3 𝐼 = (iEdgβ€˜πΊ)
31, 2usgr2pth 29530 . 2 (𝐺 ∈ USGraph β†’ ((𝐹(Pathsβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
4 r19.42v 3184 . . . . . . . . 9 (βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
5 rexdifpr 4656 . . . . . . . . 9 (βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
64, 5bitr3i 277 . . . . . . . 8 ((𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
76rexbii 3088 . . . . . . 7 (βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘§ ∈ 𝑉 βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
8 rexcom 3281 . . . . . . 7 (βˆƒπ‘§ ∈ 𝑉 βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ βˆƒπ‘¦ ∈ 𝑉 βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
9 df-3an 1086 . . . . . . . . . . 11 ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
10 anass 468 . . . . . . . . . . 11 ((((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
11 anass 468 . . . . . . . . . . . 12 ((((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
12 anass 468 . . . . . . . . . . . . . 14 (((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ↔ (𝑦 β‰  π‘₯ ∧ (𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯)))
13 ancom 460 . . . . . . . . . . . . . 14 ((𝑦 β‰  π‘₯ ∧ (𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯)) ↔ ((𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯) ∧ 𝑦 β‰  π‘₯))
14 necom 2988 . . . . . . . . . . . . . . . 16 (𝑦 β‰  𝑧 ↔ 𝑧 β‰  𝑦)
1514anbi2ci 624 . . . . . . . . . . . . . . 15 ((𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯) ↔ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦))
1615anbi1i 623 . . . . . . . . . . . . . 14 (((𝑦 β‰  𝑧 ∧ 𝑧 β‰  π‘₯) ∧ 𝑦 β‰  π‘₯) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯))
1712, 13, 163bitri 297 . . . . . . . . . . . . 13 (((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯))
1817anbi1i 623 . . . . . . . . . . . 12 ((((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ 𝑦 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
19 df-3an 1086 . . . . . . . . . . . 12 ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ ((𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦) ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
2011, 18, 193bitr4i 303 . . . . . . . . . . 11 ((((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧) ∧ 𝑧 β‰  π‘₯) ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
219, 10, 203bitr2i 299 . . . . . . . . . 10 ((𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
2221rexbii 3088 . . . . . . . . 9 (βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
23 rexdifpr 4656 . . . . . . . . 9 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ (𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
24 r19.42v 3184 . . . . . . . . 9 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(𝑦 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
2522, 23, 243bitr2i 299 . . . . . . . 8 (βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
2625rexbii 3088 . . . . . . 7 (βˆƒπ‘¦ ∈ 𝑉 βˆƒπ‘§ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ 𝑦 β‰  𝑧 ∧ (𝑧 β‰  π‘₯ ∧ (((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
277, 8, 263bitri 297 . . . . . 6 (βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
28 rexdifsn 4792 . . . . . 6 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘§ ∈ 𝑉 (𝑧 β‰  π‘₯ ∧ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
29 rexdifsn 4792 . . . . . 6 (βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘¦ ∈ 𝑉 (𝑦 β‰  π‘₯ ∧ βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
3027, 28, 293bitr4i 303 . . . . 5 (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))
3130a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ π‘₯ ∈ 𝑉) β†’ (βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
3231rexbidva 3170 . . 3 (𝐺 ∈ USGraph β†’ (βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})) ↔ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))))
33323anbi3d 1438 . 2 (𝐺 ∈ USGraph β†’ ((𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯, 𝑧})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦}))) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
343, 33bitrd 279 1 (𝐺 ∈ USGraph β†’ ((𝐹(Pathsβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2) ↔ (𝐹:(0..^2)–1-1β†’dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ βˆƒπ‘₯ ∈ 𝑉 βˆƒπ‘¦ ∈ (𝑉 βˆ– {π‘₯})βˆƒπ‘§ ∈ (𝑉 βˆ– {π‘₯, 𝑦})(((π‘ƒβ€˜0) = π‘₯ ∧ (π‘ƒβ€˜1) = 𝑧 ∧ (π‘ƒβ€˜2) = 𝑦) ∧ ((πΌβ€˜(πΉβ€˜0)) = {π‘₯, 𝑧} ∧ (πΌβ€˜(πΉβ€˜1)) = {𝑧, 𝑦})))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   βˆ– cdif 3940  {csn 4623  {cpr 4625   class class class wbr 5141  dom cdm 5669  β€“1-1β†’wf1 6534  β€˜cfv 6537  (class class class)co 7405  0cc0 11112  1c1 11113  2c2 12271  ...cfz 13490  ..^cfzo 13633  β™―chash 14295  Vtxcvtx 28764  iEdgciedg 28765  USGraphcusgr 28917  Pathscpths 29478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-concat 14527  df-s1 14552  df-s2 14805  df-s3 14806  df-edg 28816  df-uhgr 28826  df-upgr 28850  df-umgr 28851  df-uspgr 28918  df-usgr 28919  df-wlks 29365  df-wlkson 29366  df-trls 29458  df-trlson 29459  df-pths 29482  df-spths 29483  df-pthson 29484  df-spthson 29485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator