MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexprgOLD Structured version   Visualization version   GIF version

Theorem rexprgOLD 4629
Description: Obsolete version of rexprg 4628 as of 30-Sep-2024. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) (Proof shortened by AV, 8-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
rexprgOLD ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem rexprgOLD
StepHypRef Expression
1 nfv 1922 . 2 𝑥𝜓
2 nfv 1922 . 2 𝑥𝜒
3 ralprg.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
4 ralprg.2 . 2 (𝑥 = 𝐵 → (𝜑𝜒))
51, 2, 3, 4rexprgf 4625 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wrex 3065  {cpr 4559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3069  df-rex 3070  df-v 3425  df-sbc 3712  df-un 3888  df-sn 4558  df-pr 4560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator