Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raltpg | Structured version Visualization version GIF version |
Description: Convert a restricted universal quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
raltpg.3 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
Ref | Expression |
---|---|
raltpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralprg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | ralprg.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | ralprg 4630 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
4 | raltpg.3 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
5 | 4 | ralsng 4609 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (∀𝑥 ∈ {𝐶}𝜑 ↔ 𝜃)) |
6 | 3, 5 | bi2anan9 636 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃))) |
7 | 6 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃))) |
8 | df-tp 4566 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
9 | 8 | raleqi 3346 | . . 3 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑) |
10 | ralunb 4125 | . . 3 ⊢ (∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑)) | |
11 | 9, 10 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑)) |
12 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
13 | 7, 11, 12 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ cun 3885 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: raltp 4641 raltpd 4717 f13dfv 7146 sumtp 15461 lcmftp 16341 nb3grpr 27749 frgr3v 28639 |
Copyright terms: Public domain | W3C validator |