MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raltpg Structured version   Visualization version   GIF version

Theorem raltpg 4455
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
raltpg.3 (𝑥 = 𝐶 → (𝜑𝜃))
Assertion
Ref Expression
raltpg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem raltpg
StepHypRef Expression
1 ralprg.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
2 ralprg.2 . . . . 5 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2ralprg 4453 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
4 raltpg.3 . . . . 5 (𝑥 = 𝐶 → (𝜑𝜃))
54ralsng 4438 . . . 4 (𝐶𝑋 → (∀𝑥 ∈ {𝐶}𝜑𝜃))
63, 5bi2anan9 631 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∧ 𝜃)))
763impa 1142 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∧ 𝜃)))
8 df-tp 4402 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98raleqi 3354 . . 3 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑)
10 ralunb 4021 . . 3 (∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑))
119, 10bitri 267 . 2 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑))
12 df-3an 1115 . 2 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∧ 𝜃))
137, 11, 123bitr4g 306 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  cun 3796  {csn 4397  {cpr 4399  {ctp 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-v 3416  df-sbc 3663  df-un 3803  df-sn 4398  df-pr 4400  df-tp 4402
This theorem is referenced by:  raltp  4459  raltpd  4533  f13dfv  6785  sumtp  14855  lcmftp  15722  nb3grpr  26680  frgr3v  27656
  Copyright terms: Public domain W3C validator