|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > raltpg | Structured version Visualization version GIF version | ||
| Description: Convert a restricted universal quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | 
| raltpg.3 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | 
| Ref | Expression | 
|---|---|
| raltpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralprg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | ralprg.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | ralprg 4696 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) | 
| 4 | raltpg.3 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
| 5 | 4 | ralsng 4675 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (∀𝑥 ∈ {𝐶}𝜑 ↔ 𝜃)) | 
| 6 | 3, 5 | bi2anan9 638 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | 
| 7 | 6 | 3impa 1110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | 
| 8 | df-tp 4631 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 9 | 8 | raleqi 3324 | . . 3 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑) | 
| 10 | ralunb 4197 | . . 3 ⊢ (∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑)) | |
| 11 | 9, 10 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑)) | 
| 12 | df-3an 1089 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 13 | 7, 11, 12 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∪ cun 3949 {csn 4626 {cpr 4628 {ctp 4630 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-v 3482 df-un 3956 df-sn 4627 df-pr 4629 df-tp 4631 | 
| This theorem is referenced by: raltp 4705 raltpd 4781 f13dfv 7294 sumtp 15785 lcmftp 16673 nb3grpr 29399 frgr3v 30294 usgrexmpl1lem 47980 | 
| Copyright terms: Public domain | W3C validator |