![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexprg | Structured version Visualization version GIF version |
Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2130, ax-12 2164. (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralprg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | ralprg.2 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
4 | 3 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐵 → (¬ 𝜑 ↔ ¬ 𝜒)) |
5 | 2, 4 | ralprg 4694 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒))) |
6 | ralnex 3067 | . . . 4 ⊢ (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑) | |
7 | pm4.56 987 | . . . 4 ⊢ ((¬ 𝜓 ∧ ¬ 𝜒) ↔ ¬ (𝜓 ∨ 𝜒)) | |
8 | 6, 7 | bibi12i 339 | . . 3 ⊢ ((∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒)) ↔ (¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ¬ (𝜓 ∨ 𝜒))) |
9 | notbi 319 | . . 3 ⊢ ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒)) ↔ (¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ¬ (𝜓 ∨ 𝜒))) | |
10 | 8, 9 | sylbb2 237 | . 2 ⊢ ((∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒)) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 {cpr 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-v 3471 df-un 3949 df-sn 4625 df-pr 4627 |
This theorem is referenced by: rextpg 4699 rexpr 4701 reurexprg 4704 fr2nr 5650 sgrp2nmndlem5 18872 nb3grprlem2 29181 nfrgr2v 30069 3vfriswmgrlem 30074 brfvrcld 43044 rnmptpr 44473 ldepspr 47464 zlmodzxzldeplem4 47494 |
Copyright terms: Public domain | W3C validator |