![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexprg | Structured version Visualization version GIF version |
Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2129, ax-12 2166. (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralprg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | ralprg.2 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
4 | 3 | notbid 317 | . . 3 ⊢ (𝑥 = 𝐵 → (¬ 𝜑 ↔ ¬ 𝜒)) |
5 | 2, 4 | ralprg 4699 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒))) |
6 | ralnex 3062 | . . . 4 ⊢ (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑) | |
7 | pm4.56 986 | . . . 4 ⊢ ((¬ 𝜓 ∧ ¬ 𝜒) ↔ ¬ (𝜓 ∨ 𝜒)) | |
8 | 6, 7 | bibi12i 338 | . . 3 ⊢ ((∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒)) ↔ (¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ¬ (𝜓 ∨ 𝜒))) |
9 | notbi 318 | . . 3 ⊢ ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒)) ↔ (¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ¬ (𝜓 ∨ 𝜒))) | |
10 | 8, 9 | sylbb2 237 | . 2 ⊢ ((∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒)) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-v 3465 df-un 3950 df-sn 4630 df-pr 4632 |
This theorem is referenced by: rextpg 4704 rexpr 4706 reurexprg 4709 fr2nr 5655 sgrp2nmndlem5 18886 nb3grprlem2 29251 nfrgr2v 30139 3vfriswmgrlem 30144 brfvrcld 43203 rnmptpr 44631 ldepspr 47669 zlmodzxzldeplem4 47699 |
Copyright terms: Public domain | W3C validator |