MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexprg Structured version   Visualization version   GIF version

Theorem rexprg 4373
Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
rexprg ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem rexprg
StepHypRef Expression
1 df-pr 4320 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21rexeqi 3292 . . 3 (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑)
3 rexun 3944 . . 3 (∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑))
42, 3bitri 264 . 2 (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑))
5 ralprg.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
65rexsng 4358 . . . 4 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
76orbi1d 902 . . 3 (𝐴𝑉 → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑)))
8 ralprg.2 . . . . 5 (𝑥 = 𝐵 → (𝜑𝜒))
98rexsng 4358 . . . 4 (𝐵𝑊 → (∃𝑥 ∈ {𝐵}𝜑𝜒))
109orbi2d 901 . . 3 (𝐵𝑊 → ((𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
117, 10sylan9bb 499 . 2 ((𝐴𝑉𝐵𝑊) → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
124, 11syl5bb 272 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wrex 3062  cun 3721  {csn 4317  {cpr 4319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rex 3067  df-v 3353  df-sbc 3588  df-un 3728  df-sn 4318  df-pr 4320
This theorem is referenced by:  rextpg  4375  rexpr  4377  fr2nr  5228  sgrp2nmndlem5  17624  nb3grprlem2  26506  nfrgr2v  27454  3vfriswmgrlem  27459  brfvrcld  38507  rnmptpr  39875  ldepspr  42785  zlmodzxzldeplem4  42815
  Copyright terms: Public domain W3C validator