MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexprg Structured version   Visualization version   GIF version

Theorem rexprg 4721
Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2141, ax-12 2178. (Revised by GG, 30-Sep-2024.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
rexprg ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem rexprg
StepHypRef Expression
1 ralprg.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21notbid 318 . . 3 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
3 ralprg.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
43notbid 318 . . 3 (𝑥 = 𝐵 → (¬ 𝜑 ↔ ¬ 𝜒))
52, 4ralprg 4719 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒)))
6 ralnex 3078 . . . 4 (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑)
7 pm4.56 989 . . . 4 ((¬ 𝜓 ∧ ¬ 𝜒) ↔ ¬ (𝜓𝜒))
86, 7bibi12i 339 . . 3 ((∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒)) ↔ (¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ¬ (𝜓𝜒)))
9 notbi 319 . . 3 ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)) ↔ (¬ ∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ¬ (𝜓𝜒)))
108, 9sylbb2 238 . 2 ((∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝜑 ↔ (¬ 𝜓 ∧ ¬ 𝜒)) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
115, 10syl 17 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  rextpg  4724  rexpr  4726  reurexprg  4729  fr2nr  5677  sgrp2nmndlem5  18964  nb3grprlem2  29416  nfrgr2v  30304  3vfriswmgrlem  30309  brfvrcld  43653  rnmptpr  45084  ldepspr  48202  zlmodzxzldeplem4  48232
  Copyright terms: Public domain W3C validator