MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexprgf Structured version   Visualization version   GIF version

Theorem rexprgf 4629
Description: Convert a restricted existential quantification over a pair to a disjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011.) (Revised by AV, 2-Apr-2023.)
Hypotheses
Ref Expression
ralprgf.1 𝑥𝜓
ralprgf.2 𝑥𝜒
ralprgf.a (𝑥 = 𝐴 → (𝜑𝜓))
ralprgf.b (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
rexprgf ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem rexprgf
StepHypRef Expression
1 df-pr 4564 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21rexeqi 3347 . . 3 (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑)
3 rexun 4124 . . 3 (∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑))
42, 3bitri 274 . 2 (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑))
5 ralprgf.1 . . . . 5 𝑥𝜓
6 ralprgf.a . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6rexsngf 4606 . . . 4 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
87orbi1d 914 . . 3 (𝐴𝑉 → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑)))
9 ralprgf.2 . . . . 5 𝑥𝜒
10 ralprgf.b . . . . 5 (𝑥 = 𝐵 → (𝜑𝜒))
119, 10rexsngf 4606 . . . 4 (𝐵𝑊 → (∃𝑥 ∈ {𝐵}𝜑𝜒))
1211orbi2d 913 . . 3 (𝐵𝑊 → ((𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
138, 12sylan9bb 510 . 2 ((𝐴𝑉𝐵𝑊) → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
144, 13bitrid 282 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wnf 1786  wcel 2106  wrex 3065  cun 3885  {csn 4561  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-sbc 3717  df-un 3892  df-sn 4562  df-pr 4564
This theorem is referenced by:  rexprgOLD  4633  reuprg0  4638
  Copyright terms: Public domain W3C validator