| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexprgf | Structured version Visualization version GIF version | ||
| Description: Convert a restricted existential quantification over a pair to a disjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011.) (Revised by AV, 2-Apr-2023.) |
| Ref | Expression |
|---|---|
| ralprgf.1 | ⊢ Ⅎ𝑥𝜓 |
| ralprgf.2 | ⊢ Ⅎ𝑥𝜒 |
| ralprgf.a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralprgf.b | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexprgf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4579 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | 1 | rexeqi 3291 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑) |
| 3 | rexun 4146 | . . 3 ⊢ (∃𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑)) |
| 5 | ralprgf.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | ralprgf.a | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | rexsngf 4625 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 8 | 7 | orbi1d 916 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑))) |
| 9 | ralprgf.2 | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
| 10 | ralprgf.b | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 11 | 9, 10 | rexsngf 4625 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (∃𝑥 ∈ {𝐵}𝜑 ↔ 𝜒)) |
| 12 | 11 | orbi2d 915 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ((𝜓 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ 𝜒))) |
| 13 | 8, 12 | sylan9bb 509 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∃𝑥 ∈ {𝐴}𝜑 ∨ ∃𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∨ 𝜒))) |
| 14 | 4, 13 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∃wrex 3056 ∪ cun 3900 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-sbc 3742 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: reuprg0 4655 |
| Copyright terms: Public domain | W3C validator |