MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsns Structured version   Visualization version   GIF version

Theorem rexsns 4624
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
rexsns (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsns
StepHypRef Expression
1 velsn 4592 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21anbi1i 624 . . 3 ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ (𝑥 = 𝐴𝜑))
32exbii 1849 . 2 (∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑))
4 df-rex 3057 . 2 (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑))
5 sbc5 3769 . 2 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
63, 4, 53bitr4i 303 1 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  [wsbc 3741  {csn 4576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438  df-sbc 3742  df-sn 4577
This theorem is referenced by:  rexsngf  4625  r19.12sn  4673  poimirlem25  37684
  Copyright terms: Public domain W3C validator