MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1o Structured version   Visualization version   GIF version

Theorem reeff1o 26491
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 16156 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 6804 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 6736 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 10 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 6743 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 10 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 elrp 13036 . . . . . . . . . . 11 (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧))
8 reclt1 12163 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
97, 8sylbi 217 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
10 rpre 13043 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
11 rpne0 13051 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ≠ 0)
1210, 11rereccld 12094 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (1 / 𝑧) ∈ ℝ)
13 reeff1olem 26490 . . . . . . . . . . . . . 14 (((1 / 𝑧) ∈ ℝ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
1412, 13sylan 580 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
15 eqcom 2744 . . . . . . . . . . . . . . . . 17 ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘𝑦) = (1 / 𝑧))
16 rpcnne0 13053 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ+ → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
17 recn 11245 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
18 efcl 16118 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ∈ ℂ)
20 efne0 16133 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ≠ 0)
2117, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ≠ 0)
2219, 21jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0))
23 rec11r 11966 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
2416, 22, 23syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
25 efcan 16132 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → ((exp‘𝑦) · (exp‘-𝑦)) = 1)
2625eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 = ((exp‘𝑦) · (exp‘-𝑦)))
27 negcl 11508 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℂ → -𝑦 ∈ ℂ)
28 efcl 16118 . . . . . . . . . . . . . . . . . . . . . . . 24 (-𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
30 ax-1cn 11213 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
31 divmul2 11926 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ (exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3230, 31mp3an1 1450 . . . . . . . . . . . . . . . . . . . . . . 23 (((exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3329, 18, 20, 32syl12anc 837 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3426, 33mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3517, 34syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3635eqeq1d 2739 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3736adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3824, 37bitrd 279 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘-𝑦) = 𝑧))
3915, 38bitr3id 285 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) ↔ (exp‘-𝑦) = 𝑧))
4039biimpd 229 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) → (exp‘-𝑦) = 𝑧))
4140reximdva 3168 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4241adantr 480 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4314, 42mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
44 renegcl 11572 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
45 infm3lem 12226 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦)
46 fveqeq2 6915 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → ((exp‘𝑥) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
4744, 45, 46rexxfr 5416 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
4843, 47sylibr 234 . . . . . . . . . . 11 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
4948ex 412 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (1 < (1 / 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
509, 49sylbid 240 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 < 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
5150imp 406 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
52 ef0 16127 . . . . . . . . . . 11 (exp‘0) = 1
5352eqeq2i 2750 . . . . . . . . . 10 (𝑧 = (exp‘0) ↔ 𝑧 = 1)
54 0re 11263 . . . . . . . . . . . 12 0 ∈ ℝ
55 fveqeq2 6915 . . . . . . . . . . . . 13 (𝑥 = 0 → ((exp‘𝑥) = 𝑧 ↔ (exp‘0) = 𝑧))
5655rspcev 3622 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (exp‘0) = 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5754, 56mpan 690 . . . . . . . . . . 11 ((exp‘0) = 𝑧 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5857eqcoms 2745 . . . . . . . . . 10 (𝑧 = (exp‘0) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5953, 58sylbir 235 . . . . . . . . 9 (𝑧 = 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6059adantl 481 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 = 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
61 reeff1olem 26490 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6210, 61sylan 580 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
63 1re 11261 . . . . . . . . 9 1 ∈ ℝ
64 lttri4 11345 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6510, 63, 64sylancl 586 . . . . . . . 8 (𝑧 ∈ ℝ+ → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6651, 60, 62, 65mpjao3dan 1434 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
67 fvres 6925 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
6867eqeq1d 2739 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
6968rexbiia 3092 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
7066, 69sylibr 234 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
71 fvelrnb 6969 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
724, 71ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
7370, 72sylibr 234 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
7473ssriv 3987 . . . 4 + ⊆ ran (exp ↾ ℝ)
756, 74eqssi 4000 . . 3 ran (exp ↾ ℝ) = ℝ+
76 df-fo 6567 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
774, 75, 76mpbir2an 711 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
78 df-f1o 6568 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
791, 77, 78mpbir2an 711 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951   class class class wbr 5143  ran crn 5686  cres 5687   Fn wfn 6556  wf 6557  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  -cneg 11493   / cdiv 11920  +crp 13034  expce 16097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  reefiso  26492  efcvx  26493  reefgim  26494  eff1olem  26590  dfrelog  26607  relogf1o  26608  dvrelog  26679
  Copyright terms: Public domain W3C validator