MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1o Structured version   Visualization version   GIF version

Theorem reeff1o 25959
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 16063 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 6788 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 6718 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 10 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 6725 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 10 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 elrp 12976 . . . . . . . . . . 11 (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧))
8 reclt1 12109 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
97, 8sylbi 216 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
10 rpre 12982 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
11 rpne0 12990 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ≠ 0)
1210, 11rereccld 12041 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (1 / 𝑧) ∈ ℝ)
13 reeff1olem 25958 . . . . . . . . . . . . . 14 (((1 / 𝑧) ∈ ℝ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
1412, 13sylan 581 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
15 eqcom 2740 . . . . . . . . . . . . . . . . 17 ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘𝑦) = (1 / 𝑧))
16 rpcnne0 12992 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ+ → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
17 recn 11200 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
18 efcl 16026 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ∈ ℂ)
20 efne0 16040 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ≠ 0)
2117, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ≠ 0)
2219, 21jca 513 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0))
23 rec11r 11913 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
2416, 22, 23syl2an 597 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
25 efcan 16039 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → ((exp‘𝑦) · (exp‘-𝑦)) = 1)
2625eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 = ((exp‘𝑦) · (exp‘-𝑦)))
27 negcl 11460 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℂ → -𝑦 ∈ ℂ)
28 efcl 16026 . . . . . . . . . . . . . . . . . . . . . . . 24 (-𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
30 ax-1cn 11168 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
31 divmul2 11876 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ (exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3230, 31mp3an1 1449 . . . . . . . . . . . . . . . . . . . . . . 23 (((exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3329, 18, 20, 32syl12anc 836 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3426, 33mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3517, 34syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3635eqeq1d 2735 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3736adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3824, 37bitrd 279 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘-𝑦) = 𝑧))
3915, 38bitr3id 285 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) ↔ (exp‘-𝑦) = 𝑧))
4039biimpd 228 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) → (exp‘-𝑦) = 𝑧))
4140reximdva 3169 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4241adantr 482 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4314, 42mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
44 renegcl 11523 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
45 infm3lem 12172 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦)
46 fveqeq2 6901 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → ((exp‘𝑥) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
4744, 45, 46rexxfr 5415 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
4843, 47sylibr 233 . . . . . . . . . . 11 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
4948ex 414 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (1 < (1 / 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
509, 49sylbid 239 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 < 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
5150imp 408 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
52 ef0 16034 . . . . . . . . . . 11 (exp‘0) = 1
5352eqeq2i 2746 . . . . . . . . . 10 (𝑧 = (exp‘0) ↔ 𝑧 = 1)
54 0re 11216 . . . . . . . . . . . 12 0 ∈ ℝ
55 fveqeq2 6901 . . . . . . . . . . . . 13 (𝑥 = 0 → ((exp‘𝑥) = 𝑧 ↔ (exp‘0) = 𝑧))
5655rspcev 3613 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (exp‘0) = 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5754, 56mpan 689 . . . . . . . . . . 11 ((exp‘0) = 𝑧 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5857eqcoms 2741 . . . . . . . . . 10 (𝑧 = (exp‘0) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5953, 58sylbir 234 . . . . . . . . 9 (𝑧 = 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6059adantl 483 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 = 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
61 reeff1olem 25958 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6210, 61sylan 581 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
63 1re 11214 . . . . . . . . 9 1 ∈ ℝ
64 lttri4 11298 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6510, 63, 64sylancl 587 . . . . . . . 8 (𝑧 ∈ ℝ+ → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6651, 60, 62, 65mpjao3dan 1432 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
67 fvres 6911 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
6867eqeq1d 2735 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
6968rexbiia 3093 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
7066, 69sylibr 233 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
71 fvelrnb 6953 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
724, 71ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
7370, 72sylibr 233 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
7473ssriv 3987 . . . 4 + ⊆ ran (exp ↾ ℝ)
756, 74eqssi 3999 . . 3 ran (exp ↾ ℝ) = ℝ+
76 df-fo 6550 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
774, 75, 76mpbir2an 710 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
78 df-f1o 6551 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
791, 77, 78mpbir2an 710 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3o 1087   = wceq 1542  wcel 2107  wne 2941  wrex 3071  wss 3949   class class class wbr 5149  ran crn 5678  cres 5679   Fn wfn 6539  wf 6540  1-1wf1 6541  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  1c1 11111   · cmul 11115   < clt 11248  -cneg 11445   / cdiv 11871  +crp 12974  expce 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cncf 24394  df-limc 25383  df-dv 25384
This theorem is referenced by:  reefiso  25960  efcvx  25961  reefgim  25962  eff1olem  26057  dfrelog  26074  relogf1o  26075  dvrelog  26145
  Copyright terms: Public domain W3C validator