MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1o Structured version   Visualization version   GIF version

Theorem reeff1o 26357
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 16088 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 6756 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 6688 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 10 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 6695 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 10 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 elrp 12953 . . . . . . . . . . 11 (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧))
8 reclt1 12078 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
97, 8sylbi 217 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
10 rpre 12960 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
11 rpne0 12968 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ≠ 0)
1210, 11rereccld 12009 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (1 / 𝑧) ∈ ℝ)
13 reeff1olem 26356 . . . . . . . . . . . . . 14 (((1 / 𝑧) ∈ ℝ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
1412, 13sylan 580 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
15 eqcom 2736 . . . . . . . . . . . . . . . . 17 ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘𝑦) = (1 / 𝑧))
16 rpcnne0 12970 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ+ → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
17 recn 11158 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
18 efcl 16048 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ∈ ℂ)
20 efne0 16064 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ≠ 0)
2117, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ≠ 0)
2219, 21jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0))
23 rec11r 11881 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
2416, 22, 23syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
25 efcan 16062 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → ((exp‘𝑦) · (exp‘-𝑦)) = 1)
2625eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 = ((exp‘𝑦) · (exp‘-𝑦)))
27 negcl 11421 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℂ → -𝑦 ∈ ℂ)
28 efcl 16048 . . . . . . . . . . . . . . . . . . . . . . . 24 (-𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
30 ax-1cn 11126 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
31 divmul2 11841 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ (exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3230, 31mp3an1 1450 . . . . . . . . . . . . . . . . . . . . . . 23 (((exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3329, 18, 20, 32syl12anc 836 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3426, 33mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3517, 34syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3635eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3736adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3824, 37bitrd 279 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘-𝑦) = 𝑧))
3915, 38bitr3id 285 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) ↔ (exp‘-𝑦) = 𝑧))
4039biimpd 229 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) → (exp‘-𝑦) = 𝑧))
4140reximdva 3146 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4241adantr 480 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4314, 42mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
44 renegcl 11485 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
45 infm3lem 12141 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦)
46 fveqeq2 6867 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → ((exp‘𝑥) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
4744, 45, 46rexxfr 5371 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
4843, 47sylibr 234 . . . . . . . . . . 11 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
4948ex 412 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (1 < (1 / 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
509, 49sylbid 240 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 < 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
5150imp 406 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
52 ef0 16057 . . . . . . . . . . 11 (exp‘0) = 1
5352eqeq2i 2742 . . . . . . . . . 10 (𝑧 = (exp‘0) ↔ 𝑧 = 1)
54 0re 11176 . . . . . . . . . . . 12 0 ∈ ℝ
55 fveqeq2 6867 . . . . . . . . . . . . 13 (𝑥 = 0 → ((exp‘𝑥) = 𝑧 ↔ (exp‘0) = 𝑧))
5655rspcev 3588 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (exp‘0) = 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5754, 56mpan 690 . . . . . . . . . . 11 ((exp‘0) = 𝑧 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5857eqcoms 2737 . . . . . . . . . 10 (𝑧 = (exp‘0) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5953, 58sylbir 235 . . . . . . . . 9 (𝑧 = 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6059adantl 481 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 = 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
61 reeff1olem 26356 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6210, 61sylan 580 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
63 1re 11174 . . . . . . . . 9 1 ∈ ℝ
64 lttri4 11258 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6510, 63, 64sylancl 586 . . . . . . . 8 (𝑧 ∈ ℝ+ → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6651, 60, 62, 65mpjao3dan 1434 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
67 fvres 6877 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
6867eqeq1d 2731 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
6968rexbiia 3074 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
7066, 69sylibr 234 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
71 fvelrnb 6921 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
724, 71ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
7370, 72sylibr 234 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
7473ssriv 3950 . . . 4 + ⊆ ran (exp ↾ ℝ)
756, 74eqssi 3963 . . 3 ran (exp ↾ ℝ) = ℝ+
76 df-fo 6517 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
774, 75, 76mpbir2an 711 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
78 df-f1o 6518 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
791, 77, 78mpbir2an 711 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3914   class class class wbr 5107  ran crn 5639  cres 5640   Fn wfn 6506  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  -cneg 11406   / cdiv 11835  +crp 12951  expce 16027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  reefiso  26358  efcvx  26359  reefgim  26360  eff1olem  26457  dfrelog  26474  relogf1o  26475  dvrelog  26546
  Copyright terms: Public domain W3C validator