| Step | Hyp | Ref
| Expression |
| 1 | | ssel 3977 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ → (𝑣 ∈ 𝐴 → 𝑣 ∈ ℝ)) |
| 2 | 1 | pm4.71rd 562 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → (𝑣 ∈ 𝐴 ↔ (𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴))) |
| 3 | 2 | exbidv 1921 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∃𝑣 𝑣 ∈ 𝐴 ↔ ∃𝑣(𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴))) |
| 4 | | df-rex 3071 |
. . . . . . . 8
⊢
(∃𝑣 ∈
ℝ 𝑣 ∈ 𝐴 ↔ ∃𝑣(𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴)) |
| 5 | | renegcl 11572 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ → -𝑤 ∈
ℝ) |
| 6 | | infm3lem 12226 |
. . . . . . . . 9
⊢ (𝑣 ∈ ℝ →
∃𝑤 ∈ ℝ
𝑣 = -𝑤) |
| 7 | | eleq1 2829 |
. . . . . . . . 9
⊢ (𝑣 = -𝑤 → (𝑣 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
| 8 | 5, 6, 7 | rexxfr 5416 |
. . . . . . . 8
⊢
(∃𝑣 ∈
ℝ 𝑣 ∈ 𝐴 ↔ ∃𝑤 ∈ ℝ -𝑤 ∈ 𝐴) |
| 9 | 4, 8 | bitr3i 277 |
. . . . . . 7
⊢
(∃𝑣(𝑣 ∈ ℝ ∧ 𝑣 ∈ 𝐴) ↔ ∃𝑤 ∈ ℝ -𝑤 ∈ 𝐴) |
| 10 | 3, 9 | bitrdi 287 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑣 𝑣 ∈ 𝐴 ↔ ∃𝑤 ∈ ℝ -𝑤 ∈ 𝐴)) |
| 11 | | n0 4353 |
. . . . . 6
⊢ (𝐴 ≠ ∅ ↔
∃𝑣 𝑣 ∈ 𝐴) |
| 12 | | rabn0 4389 |
. . . . . 6
⊢ ({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ≠ ∅ ↔ ∃𝑤 ∈ ℝ -𝑤 ∈ 𝐴) |
| 13 | 10, 11, 12 | 3bitr4g 314 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ ↔ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ≠ ∅)) |
| 14 | | ssel 3977 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
| 15 | 14 | pm4.71rd 562 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
| 16 | 15 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ → ((𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦) ↔ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑥 ≤ 𝑦))) |
| 17 | | impexp 450 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦))) |
| 18 | 16, 17 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ → ((𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦)))) |
| 19 | 18 | albidv 1920 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ →
(∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦)))) |
| 20 | | df-ral 3062 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦)) |
| 21 | | renegcl 11572 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ℝ → -𝑣 ∈
ℝ) |
| 22 | | infm3lem 12226 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ →
∃𝑣 ∈ ℝ
𝑦 = -𝑣) |
| 23 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑦 = -𝑣 → (𝑦 ∈ 𝐴 ↔ -𝑣 ∈ 𝐴)) |
| 24 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑦 = -𝑣 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ -𝑣)) |
| 25 | 23, 24 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑣 → ((𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦) ↔ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣))) |
| 26 | 21, 22, 25 | ralxfr 5414 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
ℝ (𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦) ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣)) |
| 27 | | df-ral 3062 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
ℝ (𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦))) |
| 28 | 26, 27 | bitr3i 277 |
. . . . . . . 8
⊢
(∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → 𝑥 ≤ 𝑦))) |
| 29 | 19, 20, 28 | 3bitr4g 314 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣))) |
| 30 | 29 | rexbidv 3179 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣))) |
| 31 | | renegcl 11572 |
. . . . . . . 8
⊢ (𝑢 ∈ ℝ → -𝑢 ∈
ℝ) |
| 32 | | infm3lem 12226 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ →
∃𝑢 ∈ ℝ
𝑥 = -𝑢) |
| 33 | | breq1 5146 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑢 → (𝑥 ≤ -𝑣 ↔ -𝑢 ≤ -𝑣)) |
| 34 | 33 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑥 = -𝑢 → ((-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣) ↔ (-𝑣 ∈ 𝐴 → -𝑢 ≤ -𝑣))) |
| 35 | 34 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑥 = -𝑢 → (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣) ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → -𝑢 ≤ -𝑣))) |
| 36 | 31, 32, 35 | rexxfr 5416 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℝ ∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣) ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → -𝑢 ≤ -𝑣)) |
| 37 | | negeq 11500 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑣 → -𝑤 = -𝑣) |
| 38 | 37 | eleq1d 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑣 → (-𝑤 ∈ 𝐴 ↔ -𝑣 ∈ 𝐴)) |
| 39 | 38 | elrab 3692 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ↔ (𝑣 ∈ ℝ ∧ -𝑣 ∈ 𝐴)) |
| 40 | 39 | imbi1i 349 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → 𝑣 ≤ 𝑢) ↔ ((𝑣 ∈ ℝ ∧ -𝑣 ∈ 𝐴) → 𝑣 ≤ 𝑢)) |
| 41 | | impexp 450 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ ℝ ∧ -𝑣 ∈ 𝐴) → 𝑣 ≤ 𝑢) ↔ (𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢))) |
| 42 | 40, 41 | bitri 275 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → 𝑣 ≤ 𝑢) ↔ (𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢))) |
| 43 | 42 | albii 1819 |
. . . . . . . . . 10
⊢
(∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → 𝑣 ≤ 𝑢) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢))) |
| 44 | | df-ral 3062 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ 𝐴}𝑣 ≤ 𝑢 ↔ ∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → 𝑣 ≤ 𝑢)) |
| 45 | | df-ral 3062 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢))) |
| 46 | 43, 44, 45 | 3bitr4ri 304 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢) ↔ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 ≤ 𝑢) |
| 47 | | leneg 11766 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑣 ≤ 𝑢 ↔ -𝑢 ≤ -𝑣)) |
| 48 | 47 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣 ≤ 𝑢 ↔ -𝑢 ≤ -𝑣)) |
| 49 | 48 | imbi2d 340 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢) ↔ (-𝑣 ∈ 𝐴 → -𝑢 ≤ -𝑣))) |
| 50 | 49 | ralbidva 3176 |
. . . . . . . . 9
⊢ (𝑢 ∈ ℝ →
(∀𝑣 ∈ ℝ
(-𝑣 ∈ 𝐴 → 𝑣 ≤ 𝑢) ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → -𝑢 ≤ -𝑣))) |
| 51 | 46, 50 | bitr3id 285 |
. . . . . . . 8
⊢ (𝑢 ∈ ℝ →
(∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 ≤ 𝑢 ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → -𝑢 ≤ -𝑣))) |
| 52 | 51 | rexbiia 3092 |
. . . . . . 7
⊢
(∃𝑢 ∈
ℝ ∀𝑣 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ 𝐴}𝑣 ≤ 𝑢 ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → -𝑢 ≤ -𝑣)) |
| 53 | 36, 52 | bitr4i 278 |
. . . . . 6
⊢
(∃𝑥 ∈
ℝ ∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → 𝑥 ≤ -𝑣) ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 ≤ 𝑢) |
| 54 | 30, 53 | bitrdi 287 |
. . . . 5
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 ≤ 𝑢)) |
| 55 | 13, 54 | anbi12d 632 |
. . . 4
⊢ (𝐴 ⊆ ℝ → ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ↔ ({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ≠ ∅ ∧ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 ≤ 𝑢))) |
| 56 | | ssrab2 4080 |
. . . . 5
⊢ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ⊆ ℝ |
| 57 | | sup3 12225 |
. . . . 5
⊢ (({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ⊆ ℝ ∧ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ≠ ∅ ∧ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 ≤ 𝑢) → ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡))) |
| 58 | 56, 57 | mp3an1 1450 |
. . . 4
⊢ (({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ≠ ∅ ∧ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 ≤ 𝑢) → ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡))) |
| 59 | 55, 58 | biimtrdi 253 |
. . 3
⊢ (𝐴 ⊆ ℝ → ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡)))) |
| 60 | 15 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ → ((𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴) → ¬ 𝑦 < 𝑥))) |
| 61 | | impexp 450 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴) → ¬ 𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥))) |
| 62 | 60, 61 | bitrdi 287 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → ((𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥)))) |
| 63 | 62 | albidv 1920 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥)))) |
| 64 | | df-ral 3062 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥)) |
| 65 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑦 = -𝑣 → (𝑦 < 𝑥 ↔ -𝑣 < 𝑥)) |
| 66 | 65 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑣 → (¬ 𝑦 < 𝑥 ↔ ¬ -𝑣 < 𝑥)) |
| 67 | 23, 66 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = -𝑣 → ((𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥) ↔ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥))) |
| 68 | 21, 22, 67 | ralxfr 5414 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ℝ (𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥) ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥)) |
| 69 | | df-ral 3062 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ℝ (𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥))) |
| 70 | 68, 69 | bitr3i 277 |
. . . . . . 7
⊢
(∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 ∈ 𝐴 → ¬ 𝑦 < 𝑥))) |
| 71 | 63, 64, 70 | 3bitr4g 314 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥))) |
| 72 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑦 = -𝑣 → (𝑥 < 𝑦 ↔ 𝑥 < -𝑣)) |
| 73 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑣 → (𝑧 < 𝑦 ↔ 𝑧 < -𝑣)) |
| 74 | 73 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑦 = -𝑣 → (∃𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ 𝐴 𝑧 < -𝑣)) |
| 75 | 72, 74 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑦 = -𝑣 → ((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (𝑥 < -𝑣 → ∃𝑧 ∈ 𝐴 𝑧 < -𝑣))) |
| 76 | 21, 22, 75 | ralxfr 5414 |
. . . . . . 7
⊢
(∀𝑦 ∈
ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑧 ∈ 𝐴 𝑧 < -𝑣)) |
| 77 | | ssel 3977 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ ℝ → (𝑧 ∈ 𝐴 → 𝑧 ∈ ℝ)) |
| 78 | 77 | adantrd 491 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ ℝ → ((𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣) → 𝑧 ∈ ℝ)) |
| 79 | 78 | pm4.71rd 562 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ ℝ → ((𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣) ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣)))) |
| 80 | 79 | exbidv 1921 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ →
(∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣) ↔ ∃𝑧(𝑧 ∈ ℝ ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣)))) |
| 81 | | df-rex 3071 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝐴 𝑧 < -𝑣 ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣)) |
| 82 | | renegcl 11572 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → -𝑡 ∈
ℝ) |
| 83 | | infm3lem 12226 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ →
∃𝑡 ∈ ℝ
𝑧 = -𝑡) |
| 84 | | eleq1 2829 |
. . . . . . . . . . . . 13
⊢ (𝑧 = -𝑡 → (𝑧 ∈ 𝐴 ↔ -𝑡 ∈ 𝐴)) |
| 85 | | breq1 5146 |
. . . . . . . . . . . . 13
⊢ (𝑧 = -𝑡 → (𝑧 < -𝑣 ↔ -𝑡 < -𝑣)) |
| 86 | 84, 85 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑧 = -𝑡 → ((𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣) ↔ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) |
| 87 | 82, 83, 86 | rexxfr 5416 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ℝ (𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣) ↔ ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)) |
| 88 | | df-rex 3071 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ℝ (𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣) ↔ ∃𝑧(𝑧 ∈ ℝ ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣))) |
| 89 | 87, 88 | bitr3i 277 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣) ↔ ∃𝑧(𝑧 ∈ ℝ ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 < -𝑣))) |
| 90 | 80, 81, 89 | 3bitr4g 314 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ →
(∃𝑧 ∈ 𝐴 𝑧 < -𝑣 ↔ ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) |
| 91 | 90 | imbi2d 340 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → ((𝑥 < -𝑣 → ∃𝑧 ∈ 𝐴 𝑧 < -𝑣) ↔ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 92 | 91 | ralbidv 3178 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∀𝑣 ∈ ℝ
(𝑥 < -𝑣 → ∃𝑧 ∈ 𝐴 𝑧 < -𝑣) ↔ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 93 | 76, 92 | bitrid 283 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∀𝑦 ∈ ℝ
(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 94 | 71, 93 | anbi12d 632 |
. . . . 5
⊢ (𝐴 ⊆ ℝ →
((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))))) |
| 95 | 94 | rexbidv 3179 |
. . . 4
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))))) |
| 96 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑢 → (-𝑣 < 𝑥 ↔ -𝑣 < -𝑢)) |
| 97 | 96 | notbid 318 |
. . . . . . . . 9
⊢ (𝑥 = -𝑢 → (¬ -𝑣 < 𝑥 ↔ ¬ -𝑣 < -𝑢)) |
| 98 | 97 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑥 = -𝑢 → ((-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ↔ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢))) |
| 99 | 98 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑥 = -𝑢 → (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢))) |
| 100 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑥 = -𝑢 → (𝑥 < -𝑣 ↔ -𝑢 < -𝑣)) |
| 101 | 100 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑥 = -𝑢 → ((𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)) ↔ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 102 | 101 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑥 = -𝑢 → (∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)) ↔ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 103 | 99, 102 | anbi12d 632 |
. . . . . 6
⊢ (𝑥 = -𝑢 → ((∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) ↔ (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))))) |
| 104 | 31, 32, 103 | rexxfr 5416 |
. . . . 5
⊢
(∃𝑥 ∈
ℝ (∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 105 | 39 | imbi1i 349 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → ¬ 𝑢 < 𝑣) ↔ ((𝑣 ∈ ℝ ∧ -𝑣 ∈ 𝐴) → ¬ 𝑢 < 𝑣)) |
| 106 | | impexp 450 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ ℝ ∧ -𝑣 ∈ 𝐴) → ¬ 𝑢 < 𝑣) ↔ (𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣))) |
| 107 | 105, 106 | bitri 275 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → ¬ 𝑢 < 𝑣) ↔ (𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣))) |
| 108 | 107 | albii 1819 |
. . . . . . . . 9
⊢
(∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → ¬ 𝑢 < 𝑣) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣))) |
| 109 | | df-ral 3062 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ↔ ∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} → ¬ 𝑢 < 𝑣)) |
| 110 | | df-ral 3062 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣))) |
| 111 | 108, 109,
110 | 3bitr4ri 304 |
. . . . . . . 8
⊢
(∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣) ↔ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣) |
| 112 | | ltneg 11763 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 < 𝑣 ↔ -𝑣 < -𝑢)) |
| 113 | 112 | notbid 318 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (¬
𝑢 < 𝑣 ↔ ¬ -𝑣 < -𝑢)) |
| 114 | 113 | imbi2d 340 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣) ↔ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢))) |
| 115 | 114 | ralbidva 3176 |
. . . . . . . 8
⊢ (𝑢 ∈ ℝ →
(∀𝑣 ∈ ℝ
(-𝑣 ∈ 𝐴 → ¬ 𝑢 < 𝑣) ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢))) |
| 116 | 111, 115 | bitr3id 285 |
. . . . . . 7
⊢ (𝑢 ∈ ℝ →
(∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ↔ ∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢))) |
| 117 | | ltneg 11763 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑣 < 𝑢 ↔ -𝑢 < -𝑣)) |
| 118 | 117 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣 < 𝑢 ↔ -𝑢 < -𝑣)) |
| 119 | | negeq 11500 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑡 → -𝑤 = -𝑡) |
| 120 | 119 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑡 → (-𝑤 ∈ 𝐴 ↔ -𝑡 ∈ 𝐴)) |
| 121 | 120 | rexrab 3702 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ 𝐴}𝑣 < 𝑡 ↔ ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ 𝑣 < 𝑡)) |
| 122 | | ltneg 11763 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑣 < 𝑡 ↔ -𝑡 < -𝑣)) |
| 123 | 122 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ℝ ∧ 𝑡 ∈ ℝ) → ((-𝑡 ∈ 𝐴 ∧ 𝑣 < 𝑡) ↔ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) |
| 124 | 123 | rexbidva 3177 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ ℝ →
(∃𝑡 ∈ ℝ
(-𝑡 ∈ 𝐴 ∧ 𝑣 < 𝑡) ↔ ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) |
| 125 | 121, 124 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ℝ →
(∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡 ↔ ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) |
| 126 | 125 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) →
(∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡 ↔ ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) |
| 127 | 118, 126 | imbi12d 344 |
. . . . . . . 8
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡) ↔ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 128 | 127 | ralbidva 3176 |
. . . . . . 7
⊢ (𝑢 ∈ ℝ →
(∀𝑣 ∈ ℝ
(𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡) ↔ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 129 | 116, 128 | anbi12d 632 |
. . . . . 6
⊢ (𝑢 ∈ ℝ →
((∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡)) ↔ (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))))) |
| 130 | 129 | rexbiia 3092 |
. . . . 5
⊢
(∃𝑢 ∈
ℝ (∀𝑣 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡)) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣)))) |
| 131 | 104, 130 | bitr4i 278 |
. . . 4
⊢
(∃𝑥 ∈
ℝ (∀𝑣 ∈
ℝ (-𝑣 ∈ 𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡 ∈ 𝐴 ∧ -𝑡 < -𝑣))) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡))) |
| 132 | 95, 131 | bitrdi 287 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑣 < 𝑡)))) |
| 133 | 59, 132 | sylibrd 259 |
. 2
⊢ (𝐴 ⊆ ℝ → ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
| 134 | 133 | 3impib 1117 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |