MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infm3 Structured version   Visualization version   GIF version

Theorem infm3 11591
Description: The completeness axiom for reals in terms of infimum: a nonempty, bounded-below set of reals has an infimum. (This theorem is the dual of sup3 11589.) (Contributed by NM, 14-Jun-2005.)
Assertion
Ref Expression
infm3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem infm3
Dummy variables 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3911 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑣𝐴𝑣 ∈ ℝ))
21pm4.71rd 566 . . . . . . . 8 (𝐴 ⊆ ℝ → (𝑣𝐴 ↔ (𝑣 ∈ ℝ ∧ 𝑣𝐴)))
32exbidv 1922 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑣 𝑣𝐴 ↔ ∃𝑣(𝑣 ∈ ℝ ∧ 𝑣𝐴)))
4 df-rex 3115 . . . . . . . 8 (∃𝑣 ∈ ℝ 𝑣𝐴 ↔ ∃𝑣(𝑣 ∈ ℝ ∧ 𝑣𝐴))
5 renegcl 10942 . . . . . . . . 9 (𝑤 ∈ ℝ → -𝑤 ∈ ℝ)
6 infm3lem 11590 . . . . . . . . 9 (𝑣 ∈ ℝ → ∃𝑤 ∈ ℝ 𝑣 = -𝑤)
7 eleq1 2880 . . . . . . . . 9 (𝑣 = -𝑤 → (𝑣𝐴 ↔ -𝑤𝐴))
85, 6, 7rexxfr 5285 . . . . . . . 8 (∃𝑣 ∈ ℝ 𝑣𝐴 ↔ ∃𝑤 ∈ ℝ -𝑤𝐴)
94, 8bitr3i 280 . . . . . . 7 (∃𝑣(𝑣 ∈ ℝ ∧ 𝑣𝐴) ↔ ∃𝑤 ∈ ℝ -𝑤𝐴)
103, 9syl6bb 290 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑣 𝑣𝐴 ↔ ∃𝑤 ∈ ℝ -𝑤𝐴))
11 n0 4263 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑣 𝑣𝐴)
12 rabn0 4296 . . . . . 6 ({𝑤 ∈ ℝ ∣ -𝑤𝐴} ≠ ∅ ↔ ∃𝑤 ∈ ℝ -𝑤𝐴)
1310, 11, 123bitr4g 317 . . . . 5 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ ↔ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ≠ ∅))
14 ssel 3911 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
1514pm4.71rd 566 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
1615imbi1d 345 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑦𝐴𝑥𝑦) ↔ ((𝑦 ∈ ℝ ∧ 𝑦𝐴) → 𝑥𝑦)))
17 impexp 454 . . . . . . . . . 10 (((𝑦 ∈ ℝ ∧ 𝑦𝐴) → 𝑥𝑦) ↔ (𝑦 ∈ ℝ → (𝑦𝐴𝑥𝑦)))
1816, 17syl6bb 290 . . . . . . . . 9 (𝐴 ⊆ ℝ → ((𝑦𝐴𝑥𝑦) ↔ (𝑦 ∈ ℝ → (𝑦𝐴𝑥𝑦))))
1918albidv 1921 . . . . . . . 8 (𝐴 ⊆ ℝ → (∀𝑦(𝑦𝐴𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦𝐴𝑥𝑦))))
20 df-ral 3114 . . . . . . . 8 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
21 renegcl 10942 . . . . . . . . . 10 (𝑣 ∈ ℝ → -𝑣 ∈ ℝ)
22 infm3lem 11590 . . . . . . . . . 10 (𝑦 ∈ ℝ → ∃𝑣 ∈ ℝ 𝑦 = -𝑣)
23 eleq1 2880 . . . . . . . . . . 11 (𝑦 = -𝑣 → (𝑦𝐴 ↔ -𝑣𝐴))
24 breq2 5037 . . . . . . . . . . 11 (𝑦 = -𝑣 → (𝑥𝑦𝑥 ≤ -𝑣))
2523, 24imbi12d 348 . . . . . . . . . 10 (𝑦 = -𝑣 → ((𝑦𝐴𝑥𝑦) ↔ (-𝑣𝐴𝑥 ≤ -𝑣)))
2621, 22, 25ralxfr 5283 . . . . . . . . 9 (∀𝑦 ∈ ℝ (𝑦𝐴𝑥𝑦) ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴𝑥 ≤ -𝑣))
27 df-ral 3114 . . . . . . . . 9 (∀𝑦 ∈ ℝ (𝑦𝐴𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦𝐴𝑥𝑦)))
2826, 27bitr3i 280 . . . . . . . 8 (∀𝑣 ∈ ℝ (-𝑣𝐴𝑥 ≤ -𝑣) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦𝐴𝑥𝑦)))
2919, 20, 283bitr4g 317 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴𝑥 ≤ -𝑣)))
3029rexbidv 3259 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣𝐴𝑥 ≤ -𝑣)))
31 renegcl 10942 . . . . . . . 8 (𝑢 ∈ ℝ → -𝑢 ∈ ℝ)
32 infm3lem 11590 . . . . . . . 8 (𝑥 ∈ ℝ → ∃𝑢 ∈ ℝ 𝑥 = -𝑢)
33 breq1 5036 . . . . . . . . . 10 (𝑥 = -𝑢 → (𝑥 ≤ -𝑣 ↔ -𝑢 ≤ -𝑣))
3433imbi2d 344 . . . . . . . . 9 (𝑥 = -𝑢 → ((-𝑣𝐴𝑥 ≤ -𝑣) ↔ (-𝑣𝐴 → -𝑢 ≤ -𝑣)))
3534ralbidv 3165 . . . . . . . 8 (𝑥 = -𝑢 → (∀𝑣 ∈ ℝ (-𝑣𝐴𝑥 ≤ -𝑣) ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → -𝑢 ≤ -𝑣)))
3631, 32, 35rexxfr 5285 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣𝐴𝑥 ≤ -𝑣) ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣𝐴 → -𝑢 ≤ -𝑣))
37 negeq 10871 . . . . . . . . . . . . . . 15 (𝑤 = 𝑣 → -𝑤 = -𝑣)
3837eleq1d 2877 . . . . . . . . . . . . . 14 (𝑤 = 𝑣 → (-𝑤𝐴 ↔ -𝑣𝐴))
3938elrab 3631 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ (𝑣 ∈ ℝ ∧ -𝑣𝐴))
4039imbi1i 353 . . . . . . . . . . . 12 ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → 𝑣𝑢) ↔ ((𝑣 ∈ ℝ ∧ -𝑣𝐴) → 𝑣𝑢))
41 impexp 454 . . . . . . . . . . . 12 (((𝑣 ∈ ℝ ∧ -𝑣𝐴) → 𝑣𝑢) ↔ (𝑣 ∈ ℝ → (-𝑣𝐴𝑣𝑢)))
4240, 41bitri 278 . . . . . . . . . . 11 ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → 𝑣𝑢) ↔ (𝑣 ∈ ℝ → (-𝑣𝐴𝑣𝑢)))
4342albii 1821 . . . . . . . . . 10 (∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → 𝑣𝑢) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣𝐴𝑣𝑢)))
44 df-ral 3114 . . . . . . . . . 10 (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢 ↔ ∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → 𝑣𝑢))
45 df-ral 3114 . . . . . . . . . 10 (∀𝑣 ∈ ℝ (-𝑣𝐴𝑣𝑢) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣𝐴𝑣𝑢)))
4643, 44, 453bitr4ri 307 . . . . . . . . 9 (∀𝑣 ∈ ℝ (-𝑣𝐴𝑣𝑢) ↔ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢)
47 leneg 11136 . . . . . . . . . . . 12 ((𝑣 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑣𝑢 ↔ -𝑢 ≤ -𝑣))
4847ancoms 462 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣𝑢 ↔ -𝑢 ≤ -𝑣))
4948imbi2d 344 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((-𝑣𝐴𝑣𝑢) ↔ (-𝑣𝐴 → -𝑢 ≤ -𝑣)))
5049ralbidva 3164 . . . . . . . . 9 (𝑢 ∈ ℝ → (∀𝑣 ∈ ℝ (-𝑣𝐴𝑣𝑢) ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → -𝑢 ≤ -𝑣)))
5146, 50bitr3id 288 . . . . . . . 8 (𝑢 ∈ ℝ → (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢 ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → -𝑢 ≤ -𝑣)))
5251rexbiia 3212 . . . . . . 7 (∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢 ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣𝐴 → -𝑢 ≤ -𝑣))
5336, 52bitr4i 281 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑣 ∈ ℝ (-𝑣𝐴𝑥 ≤ -𝑣) ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢)
5430, 53syl6bb 290 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢))
5513, 54anbi12d 633 . . . 4 (𝐴 ⊆ ℝ → ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ↔ ({𝑤 ∈ ℝ ∣ -𝑤𝐴} ≠ ∅ ∧ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢)))
56 ssrab2 4010 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ
57 sup3 11589 . . . . 5 (({𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ ∧ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ≠ ∅ ∧ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢) → ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡)))
5856, 57mp3an1 1445 . . . 4 (({𝑤 ∈ ℝ ∣ -𝑤𝐴} ≠ ∅ ∧ ∃𝑢 ∈ ℝ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣𝑢) → ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡)))
5955, 58syl6bi 256 . . 3 (𝐴 ⊆ ℝ → ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡))))
6015imbi1d 345 . . . . . . . . 9 (𝐴 ⊆ ℝ → ((𝑦𝐴 → ¬ 𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ ∧ 𝑦𝐴) → ¬ 𝑦 < 𝑥)))
61 impexp 454 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ 𝑦𝐴) → ¬ 𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ → (𝑦𝐴 → ¬ 𝑦 < 𝑥)))
6260, 61syl6bb 290 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑦𝐴 → ¬ 𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ → (𝑦𝐴 → ¬ 𝑦 < 𝑥))))
6362albidv 1921 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑦(𝑦𝐴 → ¬ 𝑦 < 𝑥) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦𝐴 → ¬ 𝑦 < 𝑥))))
64 df-ral 3114 . . . . . . 7 (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦(𝑦𝐴 → ¬ 𝑦 < 𝑥))
65 breq1 5036 . . . . . . . . . . 11 (𝑦 = -𝑣 → (𝑦 < 𝑥 ↔ -𝑣 < 𝑥))
6665notbid 321 . . . . . . . . . 10 (𝑦 = -𝑣 → (¬ 𝑦 < 𝑥 ↔ ¬ -𝑣 < 𝑥))
6723, 66imbi12d 348 . . . . . . . . 9 (𝑦 = -𝑣 → ((𝑦𝐴 → ¬ 𝑦 < 𝑥) ↔ (-𝑣𝐴 → ¬ -𝑣 < 𝑥)))
6821, 22, 67ralxfr 5283 . . . . . . . 8 (∀𝑦 ∈ ℝ (𝑦𝐴 → ¬ 𝑦 < 𝑥) ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥))
69 df-ral 3114 . . . . . . . 8 (∀𝑦 ∈ ℝ (𝑦𝐴 → ¬ 𝑦 < 𝑥) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦𝐴 → ¬ 𝑦 < 𝑥)))
7068, 69bitr3i 280 . . . . . . 7 (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦𝐴 → ¬ 𝑦 < 𝑥)))
7163, 64, 703bitr4g 317 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥)))
72 breq2 5037 . . . . . . . . 9 (𝑦 = -𝑣 → (𝑥 < 𝑦𝑥 < -𝑣))
73 breq2 5037 . . . . . . . . . 10 (𝑦 = -𝑣 → (𝑧 < 𝑦𝑧 < -𝑣))
7473rexbidv 3259 . . . . . . . . 9 (𝑦 = -𝑣 → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < -𝑣))
7572, 74imbi12d 348 . . . . . . . 8 (𝑦 = -𝑣 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < -𝑣 → ∃𝑧𝐴 𝑧 < -𝑣)))
7621, 22, 75ralxfr 5283 . . . . . . 7 (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑧𝐴 𝑧 < -𝑣))
77 ssel 3911 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
7877adantrd 495 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → ((𝑧𝐴𝑧 < -𝑣) → 𝑧 ∈ ℝ))
7978pm4.71rd 566 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → ((𝑧𝐴𝑧 < -𝑣) ↔ (𝑧 ∈ ℝ ∧ (𝑧𝐴𝑧 < -𝑣))))
8079exbidv 1922 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∃𝑧(𝑧𝐴𝑧 < -𝑣) ↔ ∃𝑧(𝑧 ∈ ℝ ∧ (𝑧𝐴𝑧 < -𝑣))))
81 df-rex 3115 . . . . . . . . . 10 (∃𝑧𝐴 𝑧 < -𝑣 ↔ ∃𝑧(𝑧𝐴𝑧 < -𝑣))
82 renegcl 10942 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → -𝑡 ∈ ℝ)
83 infm3lem 11590 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → ∃𝑡 ∈ ℝ 𝑧 = -𝑡)
84 eleq1 2880 . . . . . . . . . . . . 13 (𝑧 = -𝑡 → (𝑧𝐴 ↔ -𝑡𝐴))
85 breq1 5036 . . . . . . . . . . . . 13 (𝑧 = -𝑡 → (𝑧 < -𝑣 ↔ -𝑡 < -𝑣))
8684, 85anbi12d 633 . . . . . . . . . . . 12 (𝑧 = -𝑡 → ((𝑧𝐴𝑧 < -𝑣) ↔ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))
8782, 83, 86rexxfr 5285 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (𝑧𝐴𝑧 < -𝑣) ↔ ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))
88 df-rex 3115 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (𝑧𝐴𝑧 < -𝑣) ↔ ∃𝑧(𝑧 ∈ ℝ ∧ (𝑧𝐴𝑧 < -𝑣)))
8987, 88bitr3i 280 . . . . . . . . . 10 (∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣) ↔ ∃𝑧(𝑧 ∈ ℝ ∧ (𝑧𝐴𝑧 < -𝑣)))
9080, 81, 893bitr4g 317 . . . . . . . . 9 (𝐴 ⊆ ℝ → (∃𝑧𝐴 𝑧 < -𝑣 ↔ ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))
9190imbi2d 344 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑥 < -𝑣 → ∃𝑧𝐴 𝑧 < -𝑣) ↔ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
9291ralbidv 3165 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑧𝐴 𝑧 < -𝑣) ↔ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
9376, 92syl5bb 286 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
9471, 93anbi12d 633 . . . . 5 (𝐴 ⊆ ℝ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))))
9594rexbidv 3259 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))))
96 breq2 5037 . . . . . . . . . 10 (𝑥 = -𝑢 → (-𝑣 < 𝑥 ↔ -𝑣 < -𝑢))
9796notbid 321 . . . . . . . . 9 (𝑥 = -𝑢 → (¬ -𝑣 < 𝑥 ↔ ¬ -𝑣 < -𝑢))
9897imbi2d 344 . . . . . . . 8 (𝑥 = -𝑢 → ((-𝑣𝐴 → ¬ -𝑣 < 𝑥) ↔ (-𝑣𝐴 → ¬ -𝑣 < -𝑢)))
9998ralbidv 3165 . . . . . . 7 (𝑥 = -𝑢 → (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥) ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < -𝑢)))
100 breq1 5036 . . . . . . . . 9 (𝑥 = -𝑢 → (𝑥 < -𝑣 ↔ -𝑢 < -𝑣))
101100imbi1d 345 . . . . . . . 8 (𝑥 = -𝑢 → ((𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)) ↔ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
102101ralbidv 3165 . . . . . . 7 (𝑥 = -𝑢 → (∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)) ↔ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
10399, 102anbi12d 633 . . . . . 6 (𝑥 = -𝑢 → ((∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))) ↔ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))))
10431, 32, 103rexxfr 5285 . . . . 5 (∃𝑥 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
10539imbi1i 353 . . . . . . . . . . 11 ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → ¬ 𝑢 < 𝑣) ↔ ((𝑣 ∈ ℝ ∧ -𝑣𝐴) → ¬ 𝑢 < 𝑣))
106 impexp 454 . . . . . . . . . . 11 (((𝑣 ∈ ℝ ∧ -𝑣𝐴) → ¬ 𝑢 < 𝑣) ↔ (𝑣 ∈ ℝ → (-𝑣𝐴 → ¬ 𝑢 < 𝑣)))
107105, 106bitri 278 . . . . . . . . . 10 ((𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → ¬ 𝑢 < 𝑣) ↔ (𝑣 ∈ ℝ → (-𝑣𝐴 → ¬ 𝑢 < 𝑣)))
108107albii 1821 . . . . . . . . 9 (∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → ¬ 𝑢 < 𝑣) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣𝐴 → ¬ 𝑢 < 𝑣)))
109 df-ral 3114 . . . . . . . . 9 (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ↔ ∀𝑣(𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → ¬ 𝑢 < 𝑣))
110 df-ral 3114 . . . . . . . . 9 (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ 𝑢 < 𝑣) ↔ ∀𝑣(𝑣 ∈ ℝ → (-𝑣𝐴 → ¬ 𝑢 < 𝑣)))
111108, 109, 1103bitr4ri 307 . . . . . . . 8 (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ 𝑢 < 𝑣) ↔ ∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣)
112 ltneg 11133 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 < 𝑣 ↔ -𝑣 < -𝑢))
113112notbid 321 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (¬ 𝑢 < 𝑣 ↔ ¬ -𝑣 < -𝑢))
114113imbi2d 344 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((-𝑣𝐴 → ¬ 𝑢 < 𝑣) ↔ (-𝑣𝐴 → ¬ -𝑣 < -𝑢)))
115114ralbidva 3164 . . . . . . . 8 (𝑢 ∈ ℝ → (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ 𝑢 < 𝑣) ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < -𝑢)))
116111, 115bitr3id 288 . . . . . . 7 (𝑢 ∈ ℝ → (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ↔ ∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < -𝑢)))
117 ltneg 11133 . . . . . . . . . 10 ((𝑣 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑣 < 𝑢 ↔ -𝑢 < -𝑣))
118117ancoms 462 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣 < 𝑢 ↔ -𝑢 < -𝑣))
119 negeq 10871 . . . . . . . . . . . . 13 (𝑤 = 𝑡 → -𝑤 = -𝑡)
120119eleq1d 2877 . . . . . . . . . . . 12 (𝑤 = 𝑡 → (-𝑤𝐴 ↔ -𝑡𝐴))
121120rexrab 3638 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡 ↔ ∃𝑡 ∈ ℝ (-𝑡𝐴𝑣 < 𝑡))
122 ltneg 11133 . . . . . . . . . . . . 13 ((𝑣 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑣 < 𝑡 ↔ -𝑡 < -𝑣))
123122anbi2d 631 . . . . . . . . . . . 12 ((𝑣 ∈ ℝ ∧ 𝑡 ∈ ℝ) → ((-𝑡𝐴𝑣 < 𝑡) ↔ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))
124123rexbidva 3258 . . . . . . . . . . 11 (𝑣 ∈ ℝ → (∃𝑡 ∈ ℝ (-𝑡𝐴𝑣 < 𝑡) ↔ ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))
125121, 124syl5bb 286 . . . . . . . . . 10 (𝑣 ∈ ℝ → (∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡 ↔ ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))
126125adantl 485 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡 ↔ ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))
127118, 126imbi12d 348 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡) ↔ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
128127ralbidva 3164 . . . . . . 7 (𝑢 ∈ ℝ → (∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡) ↔ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
129116, 128anbi12d 633 . . . . . 6 (𝑢 ∈ ℝ → ((∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡)) ↔ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣)))))
130129rexbiia 3212 . . . . 5 (∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡)) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < -𝑢) ∧ ∀𝑣 ∈ ℝ (-𝑢 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))))
131104, 130bitr4i 281 . . . 4 (∃𝑥 ∈ ℝ (∀𝑣 ∈ ℝ (-𝑣𝐴 → ¬ -𝑣 < 𝑥) ∧ ∀𝑣 ∈ ℝ (𝑥 < -𝑣 → ∃𝑡 ∈ ℝ (-𝑡𝐴 ∧ -𝑡 < -𝑣))) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡)))
13295, 131syl6bb 290 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑢 ∈ ℝ (∀𝑣 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑢 < 𝑣 ∧ ∀𝑣 ∈ ℝ (𝑣 < 𝑢 → ∃𝑡 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑣 < 𝑡))))
13359, 132sylibrd 262 . 2 (𝐴 ⊆ ℝ → ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
1341333impib 1113 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  wss 3884  c0 4246   class class class wbr 5033  cr 10529   < clt 10668  cle 10669  -cneg 10864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866
This theorem is referenced by:  infrecl  11614  infrenegsup  11615  infregelb  11616  infrelb  11617  xrinfmsslem  12693  gtinf  33775  infrglb  42219
  Copyright terms: Public domain W3C validator