![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > moxfr | Structured version Visualization version GIF version |
Description: Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
moxfr.a | ⊢ 𝐴 ∈ V |
moxfr.b | ⊢ ∃!𝑦 𝑥 = 𝐴 |
moxfr.c | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
moxfr | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moxfr.a | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑦 ∈ V → 𝐴 ∈ V) |
3 | moxfr.b | . . . . . . . 8 ⊢ ∃!𝑦 𝑥 = 𝐴 | |
4 | euex 2572 | . . . . . . . 8 ⊢ (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ ∃𝑦 𝑥 = 𝐴 |
6 | rexv 3472 | . . . . . . 7 ⊢ (∃𝑦 ∈ V 𝑥 = 𝐴 ↔ ∃𝑦 𝑥 = 𝐴) | |
7 | 5, 6 | mpbir 230 | . . . . . 6 ⊢ ∃𝑦 ∈ V 𝑥 = 𝐴 |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ V → ∃𝑦 ∈ V 𝑥 = 𝐴) |
9 | moxfr.c | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
10 | 2, 8, 9 | rexxfr 5375 | . . . 4 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑦 ∈ V 𝜓) |
11 | rexv 3472 | . . . 4 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
12 | rexv 3472 | . . . 4 ⊢ (∃𝑦 ∈ V 𝜓 ↔ ∃𝑦𝜓) | |
13 | 10, 11, 12 | 3bitr3i 301 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
14 | 1, 3, 9 | euxfrw 3683 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
15 | 13, 14 | imbi12i 351 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) |
16 | moeu 2578 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
17 | moeu 2578 | . 2 ⊢ (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) | |
18 | 15, 16, 17 | 3bitr4i 303 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃*wmo 2533 ∃!weu 2563 ∃wrex 3070 Vcvv 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-v 3449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |