Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  moxfr Structured version   Visualization version   GIF version

Theorem moxfr 41420
Description: Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Hypotheses
Ref Expression
moxfr.a 𝐴 ∈ V
moxfr.b ∃!𝑦 𝑥 = 𝐴
moxfr.c (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
moxfr (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem moxfr
StepHypRef Expression
1 moxfr.a . . . . . 6 𝐴 ∈ V
21a1i 11 . . . . 5 (𝑦 ∈ V → 𝐴 ∈ V)
3 moxfr.b . . . . . . . 8 ∃!𝑦 𝑥 = 𝐴
4 euex 2571 . . . . . . . 8 (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴)
53, 4ax-mp 5 . . . . . . 7 𝑦 𝑥 = 𝐴
6 rexv 3499 . . . . . . 7 (∃𝑦 ∈ V 𝑥 = 𝐴 ↔ ∃𝑦 𝑥 = 𝐴)
75, 6mpbir 230 . . . . . 6 𝑦 ∈ V 𝑥 = 𝐴
87a1i 11 . . . . 5 (𝑥 ∈ V → ∃𝑦 ∈ V 𝑥 = 𝐴)
9 moxfr.c . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
102, 8, 9rexxfr 5414 . . . 4 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑦 ∈ V 𝜓)
11 rexv 3499 . . . 4 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
12 rexv 3499 . . . 4 (∃𝑦 ∈ V 𝜓 ↔ ∃𝑦𝜓)
1310, 11, 123bitr3i 300 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
141, 3, 9euxfrw 3717 . . 3 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
1513, 14imbi12i 350 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
16 moeu 2577 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
17 moeu 2577 . 2 (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
1815, 16, 173bitr4i 302 1 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wex 1781  wcel 2106  ∃*wmo 2532  ∃!weu 2562  wrex 3070  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator