| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > moxfr | Structured version Visualization version GIF version | ||
| Description: Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
| Ref | Expression |
|---|---|
| moxfr.a | ⊢ 𝐴 ∈ V |
| moxfr.b | ⊢ ∃!𝑦 𝑥 = 𝐴 |
| moxfr.c | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| moxfr | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moxfr.a | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑦 ∈ V → 𝐴 ∈ V) |
| 3 | moxfr.b | . . . . . . . 8 ⊢ ∃!𝑦 𝑥 = 𝐴 | |
| 4 | euex 2575 | . . . . . . . 8 ⊢ (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ ∃𝑦 𝑥 = 𝐴 |
| 6 | rexv 3492 | . . . . . . 7 ⊢ (∃𝑦 ∈ V 𝑥 = 𝐴 ↔ ∃𝑦 𝑥 = 𝐴) | |
| 7 | 5, 6 | mpbir 231 | . . . . . 6 ⊢ ∃𝑦 ∈ V 𝑥 = 𝐴 |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ V → ∃𝑦 ∈ V 𝑥 = 𝐴) |
| 9 | moxfr.c | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 10 | 2, 8, 9 | rexxfr 5396 | . . . 4 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑦 ∈ V 𝜓) |
| 11 | rexv 3492 | . . . 4 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
| 12 | rexv 3492 | . . . 4 ⊢ (∃𝑦 ∈ V 𝜓 ↔ ∃𝑦𝜓) | |
| 13 | 10, 11, 12 | 3bitr3i 301 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| 14 | 1, 3, 9 | euxfrw 3709 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| 15 | 13, 14 | imbi12i 350 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) |
| 16 | moeu 2581 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 17 | moeu 2581 | . 2 ⊢ (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) | |
| 18 | 15, 16, 17 | 3bitr4i 303 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃*wmo 2536 ∃!weu 2566 ∃wrex 3059 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |